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Abstract

Ocean environmental parameters such as sea surface temperature, chlorophyll and sea surface
height derived from remote sensing satellites were analyzed with Yellowfin tuna dataset. The
dataset were obtained from Sri Lankan longliners fished from 2006-2008 in the northeast part of
the Indian Ocean. The results have shown that the relationship between Yellowfin tuna catch
rates and oceanographic parameters are significant. These relationships can be used to predict
fishable aggregations of Yellowfin tuna using near real–time satellite derived oceanographic
parameters. High frequencies of Yellowfin tuna catches were obtained in the areas where sea
surface temperature varied primarily between 28–30 ◦C. The corresponding sea surface heights
ranged from 205-215 cm and the Clorophyll a concentration ranged from 0.1–0.4 mgm−3. The
relationships between catch rates and the three environmental parameters have been proved by
the results obtained from the empirical cumulative distribution function (ECDF). The degrees
of the differences between the ECDF and catch-weighted cumulative distributions of the three
variables are statistically significant (p < 0.01). The strongest association showed between
catch rates and Chlorophyll a while sea surface heights showed lowest. The results obtained
from a Generalized Additive Model (GAM) shown the space-time factor is well above the
ocean environmental factors. However, the oceanographic factors were also in significant levels
(p < 0.05). Therefore, the migratory pathway is an essential factor in predicting Yellowfin tuna
habitats in the northeast Indian Ocean.
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1 INTRODUCTION

Tunas, the family Scombridae are reported
to be found in tropical and temperate oceans
around the world and account for a major
proportion of the worlds fishery products
(Collette and Nauen, 1983). Sri Lanka is
one of the oldest and most important tuna
producing island in the Indian Ocean. During
the past three decades, exploration and
exploitation of fishery resources have shown
that the tuna resources around Sri Lanka
consist of yellowfin tuna (Thunnus albacares),
Bigeye tuna (Thunnus obsesus), Skipjack tuna
(Katsuwonus pelamis), Kawakawa (Enthynnus
affinis), Frigate tuna (Auxis thazard) and
Bullet tuna (Auxis rochei) species (Joseph
et al., 1985; Dissanayake, 2005). With the
increasing demand for yellowfin tuna in the
export market, more and more efforts have
been exerted on yellowfin tuna by longlines

and Gillnets. Longline has become more
popular than gillnets as it preserves the
freshness of the fish. Therefore the current
trend is converting gillnet to longline fleets
targeting yellowfin tuna.

Yellowfin tuna is known as highly migra-
tory species and distributed over very large
oceanic extent of fishing potential. The
wide distribution of Yellowfin tuna cause
longer search time which is costly and time
consuming. Therefore, predicting fishable
aggregations making the search more effi-
cient and economic is timely important. To
achieve this, it would be useful to analyses
long–term fisheries and oceanographic data
that could affect the temporal and spatial
distribution of yellowfin tuna (Zagaglia, 2004).

Indian Ocean is greatly influenced by two
wind systems known as southwest monsoon
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and northeast monsoon causing characteristic
seasonality of rainfall, temperature, phyto-
plankton concentration, ocean currents and
mixed layer properties etc. The southwest
monsoon exists from May to September
and northeast monsoon from November to
March. The NE fishing area (Bay of Bengal)
is sheltered to the southwest monsoon–driven
sea conditions by the Indian and Sri Lankan
landmasses and vice versa. This affects the
oceanographic conditions in fishing grounds
with respect to the two monsoons. Between
the two monsoons, there are two transition
periods known as inter–monsoons where the
dynamic conditions become weak and, as a
result the sea surface get more heated and the
thermocline depth become shallower.

Previous studies have shown that the dis-
tribution of tuna species is greatly influ-
enced by oceanographic conditions such as
sea surface temperature (Sund and Blackburn,
1981; Ramos et al., 1996), hydrographic fronts
(Laurs and Lynn, 1977; Laurs and Fiedler,
1984; Fiedler and Bernard, 1987; Stretta, 1991;
Kimura and Nakai, 1997), and depth of ther-
mocline (Ueyanagi, 1969). Hence, it is rea-
sonable to assume that these factors may have
influence on the abundance and distribution
of Yellowfin tuna. Limited studies have been
carried out in the Indian Ocean to understand
the fisheries oceanography of Yellowfin tuna.
Yellowfin tuna fishery is concentrated into the
southwest and northeast part of the country
by Sri Lankan longliners

The fishery and the oceanography of Yel-
lowfin tuna have been studded taking the
fishery and the monsoon driven oceanography
into consideration. The data analyses were
done dividing the area into two sub divisions
namely southwest (SW) and northeast (NE).
Very few fishing activities have been recorded
in the southeast (SE) part due to difficult in
fishing operations as the prevailing current
system been strong.

Figure 1: Geographic locations of Yellowfin
tuna fishery dataset from 2006 to 2008 by Sri
Lankan longliners showing the two subdivi-
sions SW and NE.

Remote sensing techniques show great
potential supporting successful exploitation of
pelagic fishery resources and global fisheries
management ((Santos, 2000; Yamanaka and
Ito, 1988). The Remote Sensing technology
has proven to be a useful tool to study ther-
mal fronts, eddies and other oceanographic
features where tunas are reported to be
aggregated. The combination of satellite
and biological data could be used to identify
habitat preference and migration movements
of tuna which ultimately lead to predict the
potential fishing zones. In the literature,
several attempts have been made to study
the associate movements and catch rates
with environmental conditions (Uda, 1973;
Laurs and Lynn, 1977; Laurs and Fiedler,
1984; Fiedler and Bernard, 1987; Stretta,
1991; Power and May, 1991; Podesta, 1993;
Bigelow and He, 1999). The intent of this
study is to examine the relationship between
Yellowfin tuna occurrence in relation to the
oceanographic conditions in the northeast
part of the Indian Ocean.
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2 DATA AND METHODS

Two types of data sets consisting fishery and
satellite derived oceanographic parameters
were obtained for the period of three years
(2006–2008). Figure 1 shows the gridded
locations of Yellowfin tuna catches by Sri
Lankan longline fishery in the northeast part
(0–20 N, 64–90 E) of the Indian Ocean. To
meet the objectives of this study, the data
analyses focused on the two sub-divisions, the
SW and the NE fishing areas.

2.1 Remotely sensed satellite
data

Oceanographic data derived from satellites,
specifically sea surface temperature (SST), sea
surface chlorophyll a (CHL) and dynamic sea
surface height (SSH) were obtained from the
AMSR+AVHRR, MODIS on Terra/Aqua and
TOPEX/Poseidon-ERS (AVISO) respectively.
Availability of satellite data in the tropical
region is limited by the frequent presence of
clouds. Satellite data obtained from active
and inactive microwave sensors are cloud free.
However, ocean colour sensors (visible near
infrared) are unable to penetrate clouds. This
hampers the use of ocean colour products such
as CHL. Increased data coverage is obtained
by averaging (composition) several successive
images derived from ocean colour data. It
was assumed that the averaging time period
of a particular oceanographic parameter is
not considerably varies within the averaging
period in the region.

SST merged data product calculated
from two satellite sensors AMSRE and
AVHRR were obtained from the NOAA
optimum interpolation 1

4 degree daily sea
surface temperature analyses. The 1

4 de-
gree AMSR+AVHRR data are distributed
by NOAA satellite and information service
(ftp://eclipse.ncdc.noaa.gov) in netCDF for-

mat (http://www.unidata.ucar.edu/). The
blended AMSRE+AVHRR data were con-
verted into 1

3 degree grids to coincide with
minimum resolution of sea surface height data
obtained from TOPEX/Poseidon altimeter.
The blended multiple satellite sensors data fill
the data gaps in both time and space.

CHL were calculated from Terra/Aqua
MODIS sensor EOS AM and PM data . The
minimum period of composting to remove
cloudy pixels was found to be at least 10
images which can be taken within two weeks
from Terra and Aqua platforms. Therefore,
initially 15–day CHL composite image was
generated by 3-day composites and been
updated every 3-day steps in order to match
ups with Yellowfin tuna dataset obtained
from Sri Lankan longliners. 3–day composites
of 4 km chlorophyll data were obtained from
NASA gsfc (http://oceancolor.gsfc.nasa.gov/)

SSH data were obtained from the in-
formation collected by TOPEX/Poseidon
and ERS satellite altimeter data
(ftp://ftp.cls.fr/pub/oceano/AVISO/). The
data were available at archiving, validation
and interpolation of satellite oceanographic
data (AVISO) in netCDF format. These data
(gridded 1

3 latitude x longitude) were obtained
in 3-day composts for the period (2006–2008).
The data files contain the parameters such
the date of data collection, latitude, longitude
and sea surface height with respect to the
geoid.

2.2 Fishery data

Fishery data were collected from Sri Lankan
longline fleets. The dataset consist of fishing
(1) date, (2) position, (3) number of hooks
and (4) daily catch numbers. Number of
fishermen in each trip is almost equal and the
ice storage depends on the vessel size. The
catch is depending on the number of hooks
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and availability of bait and the bait-types.
Water temperature, search time, catch of
bait/bait–type, hooking depth, catch weight
and weather conditions were almost absent in
logbooks. Owing to the lack of these informa-
tion the effort data were not standardized for
calculating catch per unit of effort (CPUE),
which was defined as number of fish per
100 hooks per fishing day regardless of the
catch weights. There are many factors that
determine the likelihood of a particular hook
catching a fish, including the depth of hook,
bait type, availability of live food, timing and
location of effort. Fish behavior also a factor
(Ferno, 1994); not all fish that are present
will come close enough to detect the bait, not
all fish that detect the bait will bite it and
not all fish that do bite bait will get caught
on the hook. Similar hooking depth used in
a particular area can result very poor catch
rates depending on the vertical distribution.
Considering all these catch uncertainties, null
catches have been removed from the dataset.
It is also important to point out that this
CPUE cannot consider as a good index of
relative fish abundance. Therefore the CPUE
can be considered as indices of fish availability
to Sri Lankan longlines, but not as indices of
fish abundance.

The length of Sri Lankan longlines varies
between 10-15 miles and the drift due to
ocean currents during the deployed period
(4-6 hrs) is 5-10 miles. Thus, the longline data
fall within the minimum resolution of satellite
data (∼ 25 miles). The resolution of SST was
1
4 degree and SSH was 1

3 degree while CHL has
4 km. The CHL images were taken in 15–day
composites (averaging over time and space) by
which the detailed information is disappeared
although the original images were in higher
resolution. The SST and SSH were taken in
3-day composites and CHL in 15-day and then
were updated every 3-day steps. The fishery
data (CPUE) were also gridded 1

3 degree
latitude x longitude) and averaged over 3-day

fishing activity assuming that the SST, CHL
and SSH are not significantly varies within
the averaging periods. Satellite and fishery
data were combined in similar grid space and
output results were then statistically analyzed
using R software (http://www.r-project.org/).

The association between the three oceano-
graphic variables and Yellowfin tuna CPUE
were analyzed using empirical cumulative fre-
quency distribution function ECDF. In this
analysis, three functions (Perry and Smith,
1994; Andrade and Garcia, 2001) were used
as follows:

f(t) =
1
n

n∑
i=1

l(xi) (1)

With the indication function

l(xi) =
{

1 if xi ≤ 1
0 otherwise

g(t) =
1
n

n∑
i=1

yi

y
l(xi) (2)

D(t) = max|f(t)− g(t)| (3)

where f(t) is empirical cumulative frequency
distribution function, g(t) is catch-weighted
cumulative distribution function, l(xi) is
indication function, and D(t) is the absolute
value of the difference between the two curves
f(t) and g(t) at any point t, and assessed by
the standard Kolmogorov-Smirnov test. n is
the number of fishing activities, xi the mea-
surement for satellite derived oceanographic
variables in a fishing activity i, t an index
ranking the ordered observations from the
lowest to highest value of the oceanographic
variables, yi the CPUE obtained in a fishing
activity i, and the estimated mean of CPUE
for all fishing activities. The maximum
value of D(t) represents specific values of the
oceanographic variables at which the height
CPUE can be obtained.
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2.3 Optimizing fishable oceano-
graphic conditions

Two statistical models, generalized additive
model (GAM) and generalized linear model
(GLM) were applied to identify the nature
of relationships between Yellowfin tuna and
the three ocean environmental parameters.
The relationships between environmental fac-
tors and CPUE are mostly expected as non–
linear. Once the shape of the relationships be-
tween the response variable and each predictor
was identified, the appropriate functions were
used to parameterize these shapes in the GLM
model. Generalized linear models have been
used to study Yellowfin tuna CPUE variabil-
ity in eastern Pacific Ocean (Punsly, 1987; Za-
gaglia, 2004). The shapes resulting from the
GAM were reproduced as closely as possible
using the piecewise GLM. Three environmen-
tal variables were included in the analysis us-
ing a GAM (eq. 4) and a GLM (eq. 5), as
follows:

ln(CPUE) = a + s(SST )
+s(CHL) + s(SSH) + e (4)

ln(CPUE) = b + b1(SST ) + b2

×ln(CHL) + b3(SSH) + e (5)

where a and b are constants, s(.) is a
spline smoothing function of the variables
(SST,CHL, and SSH) and e is a random
error term, b1, b2, and b3 are the vectors of
model coefficients.

GAM is a non-parametric generalization
of multiple linear regressions which is less
restrictive in assumptions of the underlying
statistical data distribution (Hastie and Tib-
shirani (1990)). The GAM has no analytical
form (Mathsoft., 1999), but explain the vari-
ance of CPUE more effectively and flexibly
than the GLM. The GLM was constructed
based on the trend of Yellowfin CPUE in

relation to the predictors estimated by GAM
with the least different residual deviance
(Mathsoft., 1999). GLM estimates a function
of mean response (CPUE) as a linear function
of some set of predictors. Hence, the GLM
fit was used to predict a spatial pattern of
Yellowfin tuna CPUE.

The GLM were fitted using a Normal distri-
bution as the family associated with identity
link function (McCullagh and Nelder, 1989).
The data distribution and the link function in
the GLM were exactly the same as those used
in the GAM. A logarithmic transformation
of the CPUE was used to normalize asym-
metrical frequency distribution. The model
selection process for the best predictive model
for explaining CPUE data was based on a
forward and backward stepwise manner. The
predictors were considered to be significant
for explaining the variance of CPUE, if the
residual deviance and Akaike Information
Criteria (AIC) decrease with each addition
of the variables and the probability of final
set of variables was lower than 0.01 (p < 0.01).

3 RESULTS

3.1 Catch per unit of effort

Initial displays (Fig. 2) of monthly median
CPUE in the two fishing areas consist of
3–year catch records from 2006–2008. The
CPUE in the SW area is above the median
during the SW monsoon prevails while it
is below during the NE monsoon. Monthly
median CPUE in the NE has been stable
and yearly increased is observed from 2006
to 2008. This may be due to increase of
effort, improvements of gears, vessels and the
technology recently introduced. The CPUE
in the NE is more promising and stable the
year around. The CPUE are not normally
distributed in the two fishing areas and the
median CPUE is 0.8 and 0.9 in the SW and
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NE respectively. The standard deviations of
CPUE were 1.2 in the SW and 1.3 in the
NE and the CPUE is statistically significant
(p < 0.05) between the two areas.

Figure 2: Temporal variation of median
CPUE of Yellowfin tuna by Sri Lankan long-
lines in the two fishing grounds from 2006–
2008. The dotted line shows the overall me-
dian CPUE.

Figure 3 shows the temporal variabil-
ity of CPUE as well as the corresponding
oceanographic variables in the NE area. The
oceanographic parameters followed yearly
cycles during the 3–year period. The CPUE
in the NE doesnt show any seasonality which
means that the fishable aggregations are
found throughout the year although the
spatial existence is vary with time. Fishable
Yellowfin tuna found in warmer (28.5–30
◦C) sea surface temperatures during south-
west and inter monsoons while relatively
cooler temperatures (27–28.5 ◦C) during the
northeast monsoons (Fig. 3b) period. SST
variation in the 3–year period follows an
identical pattern which can be used to predict
Yellowfin tuna inhabitant for Sri Lankan

longliners. CHL concentrations of Yellowfin
tuna catches have been found between 0.1–0.4
mgm−3 and did not change over the years.
The SSH of Yellowfin tuna catches also follow
an identical yearly cycle helping predictions
of potential fishing grounds.

3.2 Fishable oceanographic con-
ditions

SST of Yellowfin tuna catches varies from
26-31 ◦C and the fishable SST is varies over
the year within this range as shown in the Fig.
3b. However, high frequencies of catches were
obtained primarily between 28-30 ◦C (Fig.
4a). The tendency of temperature is centered
at 29 ◦C where more catches have been taken.

CHL of Yellowfin tuna catches primarily
varies between 0.05–0.8 mgm−3 and most of
the catches have been obtained from 0.1–0.4
mgm−3 (Fig. 4b). Temporal variability is
minimal of CHL on Yellowfin tuna catches.

Frequency of Yellowfin tuna fishing days
in relation to sea surface height follows a
Gaussian distribution. The distribution of
SSH indicates that Yellowfin tuna were found
in areas where sea surface height ranged from
185-235 cm (Fig. 4c). However, the most
catches have been obtained from the waters
where SSH varies from 205-215 cm (210 ± 5
cm) while it slightly varies over the year as
shown in Fig. 4d.

The relationship between CPUE and the
three environmental variables above (Fig. 4)
is proven by the empirical cumulative dis-
tribution function (ECDF). The cumulative
distribution curves of the three variables are
different and the degrees of the differences
between two curves D(t) are highly significant
(p < 0.01) for CHL. The results showed strong
association between CPUE and SST ranging
from 28–30 ◦C, CHL ranging from 0.1–0.4
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Figure 3: Temporal variability of (a) Yellowfin CPUE, (b) SST and (c) CHL and (d) SSH extracted
from NE fishing locations from 2006–2008.

mgm−3, SSH ranging from 205–215 cm (Fig.
4). The highest association of CHL occur at
0.3 mgm−3 catch rates tend decrease at either
sides.

The space-time factor (lat/lon and month),
explains the largest portion of the data
variance (Table 2), being the most significant
factor amongst all the independent variables
included in the GAM. This explains the
migratory behavior of Yellowfin tuna, where
the largest CPUE observed close to Sri Lanka
during the early year and migratory move-
ments towards Bangladesh waters parallel to
the Indian coast.

The relationship between the given pre-
dictor and the density of Yellowfin tuna
was analyzed according to the percentage of
deviance explained and the GCV scores of
the GAM models (Table 1). Space (lat/lon)
and time (month) were the best predictor

explained the density of Yellowfin tuna with
the highest deviance (19.9%) and the lowest
GCV score (0.5965) and it was subsequently
followed by SST (4.63%), CHL (2.57%) and
SSH (1.5%). The other remaining environ-
mental factors, SST, CHL and SSH, being
statistically significant, showed associated
p− values (Table 2).

The GAM results show that the SST
influences on Yellowfin tuna catch rates and
the SST is not only the parameter that
predicts Yellowfin tuna potential habitats in
the northeast Indian Ocean (Fig. 6). Indeed,
SST has been used to describe tuna habitats
as it relatively easy to obtain and the SST
become particularly very useful in strong
surface thermal gradients, where the fishing
grounds are normally located (Laurs and
Lynn, 1977; Laurs and Fiedler, 1984).

The environmental parameters, SST, CHL
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Table 1: Single predictor GAM fits for yellowfin tuna in the NE fishing ground. For each predictor,
the percentage of deviance and the Generalized Cross Validation score is given

Parameter %Devience GCV Score
SST 04.63% 0.67658
CHL 02.57% 0.69039
SSH 01.50% 0.69595

lat× lon×month 19.90% 0.59650

Table 2: Significance of the smooth terms included in the GAM for yellowfin occurrence in the NE
fishing ground

Standard error Standard error p n
Intercept 0.01526 0.774 0.437 1673
Variable edf F P

SST 6.620 8.216 < 0.001
CHL 5.786 5.913 < 0.001
SSH 2.905 7.791 < 0.001

and SSH, showed associated p–values well
below those found for the space-time factor
(Table 1). In fact, considering their p–values
(p < 0.05) the oceanographic parameters
are also in significance levels. Therefore, the
environmental parameters influence on the
CPUE of Yellowfin tuna in the northeast
Indian Ocean.

4 DISCUSSION

Longline fishery in Sri Lanka was started
about 3 decades ago and several limitations
caused inefficient development of the fish-
ery. Fleet facilities and the knowledge on
longline techniques were not adequate for
the development of this fishery. However,
the fishermen disperse their fleets with the
gathered knowledge during the short history
of longline fishery by Sri Lankan fleets.
Single–Side–Band (SSB) radios have been
helping them to communicate and reach more
fish productive areas. Therefore, the Yellowfin
tuna fishery operates in more abundant areas
and thus, it is reasonable to assume that

the space and time factor of CPUE follows
their migratory path to some extent. The Sri
Lankan fleets operates comparatively deeper
(100-130 m) long-lines in the SW while it is
shallow (50–75 m) in the NE. Therefore, the
the Bay of Bengal can be considered as a
feeding ground. This existence of year around
fishery in the NE is explained by the stock
structure proposed by (Nishida, 1992). That
is a western and eastern stocks mixing around
Sri Lanka in their migratory path.

The fishermen have been able to follow the
migratory paths with their experience and
communication. Thus, it is assumed that the
fishing operations takes place in the areas of
high vulnerability. This assumptions is based
on the established Yellowfin tuna fishery in
the NE part of the country. The fishermen
have buildup their effective knowledge on
distribution and abundance of fishery re-
sources in their short history of longlining.
There are many reasons to occur null catches
such as hooking depth, bait, time of fishing,
availability of live food, prevailing oceano-
graphic and weather conditions. Therefore
the null catches have been removed from the
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Figure 7: Sea surface temperature contour of Yellowfin tuna availability to Sri Lankan longlines,
superimposed of Yellowfin tuna CPUE from 2006–2008. Dashed-line shows the approximate 200–
mile EEZ boundary.
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Table 3: Deviance and GCV scores of Yellowfin tuna CPUE in the NE fishing ground explained in
GAM with variables added.

Variable Residual d.f. Residual deviance GCV Score
Mean 1664.8 1120.8
SST 1659.7 1098.8 0.67658 4.63%
CHL 1656.7 1077.3 0.66729 6.50%
SSH 1611.8 903.76 0.65667 8.33%

Table 4: Construction of GLM as each variable is added, residual deviance, the approximate AIC,
and F-statistic for yellowfin availability in the NE fishing ground.

Variable Residual d.f. Residual deviance AIC F
NULL 1672 1175.2
SST 1671 1147.3 4122.7 40.665
CHL 1670 1132.9 4103.6 21.182
SSH 1669 1125.2 4094.2 11.423

dataset as null catches might not be due to
the less abundance but may be due to other
factors. Considering all these facts, it has
been assumed that the dataset represent the
real availability of Yellowfin tuna in relation
to environmental parameters such as sea
surface temperature.

The reported CPUE of Yellowfin tuna in the
present study was comparatively lower than
the other fishing nations in the Indian Ocean.
This may be due to several factors such as
inefficient longline fishery. Fleet size, number
of hooks, hooking depths and hooking depth
adjustments, suitable baits, on board technol-
ogy and the overall knowledge on fishing skills
were identified as the limiting factors for the
inefficiency. Limited fishery data were used
in this study and longer time–series fishery
data may provide more precise representation
of oceanographic parameters for Yellowfin
tuna aggregations. Therefore, the biophysical
environmental data that have been selected to
describe the Yellowfin tuna habitat may not
be precise. The AMSRE–AVHRR blended
SST was selected as the AMSRE microwave
sensor is capable of measuring SST through
clouds. Combinations of SST data with

MODIS CHL and AVISO SSH have provided
fishable conditions of Yellowfin tuna in time
and space. The relationship between Yel-
lowfin tuna catches and environments clearly
indicates that the specific times and locations
for Yellowfin tuna abundant.

In the present study, highly productive
habitats of Yellowfin tuna are linked with
the physical oceanographic structures. The
results showed that catchable aggregation
of Yellowfin tuna can be located using SST
which specific to a time period. The highest
CPUE exist within a narrow SST range (∼ 1)
between 28.0–30.0 depending on the time of
a year. This implies that the SST does not
represent the actual temperatures preferred by
Yellowfin tuna to live, although chronological
SST can be used to locate more abundant
areas combining the migratory pathways. It
has been proven that the Yellowfin tuna live
slightly above thermocline where rapid de-
crease of temperature occurs helping them to
reach favorable temperature ranges. Thermo-
cline around Sri Lanka fluctuates from 50–100
m due to seasonal monsoons wind stress.
Thus, Yellowfin tuna shows vertical movement
to find their favorable temperatures while
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Figure 4: Relationship between environmental
variables of SST (a), Chlorophyll (b) and SSH
(c) and fishing frequency of Yellowfin tuna in
the NE during 2006–2008.

Figure 5: Empirical cumulative distribution
frequencies for (a) AMSR-AVHRR SST, (b)
MODIS CHL and AVISO SSH and SST, CHL
and SSH as weighted by Yellowfin tuna CPUE
during 2006-2008. The dashed–lines show the
degree of differences of the two curves.
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Figure 6: Generalized additive model (GAM)
derived effect of oceanographic variables (a)
AMSR-AVHRR SST, (b) MODIS CHL and
(c) AVISO SSH on Yellowfin tuna CPUE (log
transformed). Dashed line indicates the 95%
confidence intervals.

they reach surface for shorter time searching
foods. These feeding fishes are vulnerable
to the Sri Lankan shallow water longlines.
Therefore Sri Lankan longline data will not
provide true favorable environment condition
of Yellowfin tuna that prolonger exist.

Block et al. (1997) and Brill et al. (1999)
found that the depth of the mixed layer
is more important than the SST for the
abundance of Yellowfin tuna. According
to their findings, adult Yellowfin tuna were
found inside the mixed layer or immediately
below it while juveniles are associated in much
shallow areas. It was unable to correlate the
mixed layer depth (depth of thermocline) and
the CPUE during the present study as less
information in the dataset. The knowledge on
the relations between CPUE and thermocline
depth can be used to further improve the
methodology of locating potential fishing
grounds.

According to Stretta (1991), Yellowfin tuna
prefers warmer waters and the abundance
of this species was higher with temperature
limits between 18-31.0 ◦C. It was reported in
the tropical Atlantic, the most of the Yellowfin
tuna catch occurs with temperatures between
22.0-29.0 ◦C and preferentially above 25.0 ◦C.
The flat relationship was evident in the tem-
perature and distribution of Yellowfin tuna
catches in Brazil coast within the range of
26-28.5 ◦C (Zagaglia, 2004). It has also been
observed that the SST values above 28.0 ◦C
seem to form a pathway of favorable thermal
conditions to the migratory movements of
Yellowfin tuna (Zagaglia, 2004). The results
of this study are also consistent with the other
findings in tropical waters.

It is well established that the SST is an im-
portant predictor of CPUE in Yellowfin tuna
longline fishery. View on an ocean scale, SST
represented not only the temperature but also
correspondence with latitudes and longitudes.
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Studies on albacore tuna in Indian and pacific
oceans have shown that the favorable SST
limits are depended on the season as well
as life history stages. Therefore, the effect
of SST on the different life history stages of
Yellowfin tuna ensure the higher CPUE by
avoiding young and juvenile in catches.

The optimum SSH ranges for the abun-
dance and distribution of Yellowfin tuna in
the northeast Indian Ocean was estimated
as 205-215 cm. The importance of SSH to
predict Yellowfin tuna fishing habitats have
been discussed by various authors (Zagaglia,
2004). It has been pointed out that the
relationship between the SSH and CPUE
may vary considerably as SSHA (Sea Surface
Height Anomaly) is the result of a complex
combination of dynamical and thermodynam-
ical factors, which could affect in opposite
ways the concentration of the fishing resources
(Zagaglia, 2004). However it is difficult to
make any comparison with others findings as
the present study has not used SSHA.

Based on the results, Yellowfin tuna
catchable oceanographic parameters in the
northeast Indian Ocean were characterized
by; SST of 28-30 ◦C, CHL of 0.1-0.4 mgm−3

and SSH 205-215 cm. These results are
closer to the previous study for Yellowfin
tuna in relation to SST (Uda, 1973)) and
CHL (Polovina et al., 2001). The results
were confirmed by statistical models. The
results obtained from this study can be
used to understand the relation between the
catchable Yellowfin tuna with respect to some
oceanographic parameters for shallow water
longliners. Spatial and temporal variations
of oceanographic parameters estimated in
this study can be used to predict potential
Yellowfin fishing grounds with near real–time
satellite data.
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