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Abstract

Understanding the relationship between environmental variables and tuna concen-
trations is important for fishery management. The present study analyzes the rela-
tionship between the skipjack (Katsuwonus pelamis) and yellowfin tuna (Thunnus
albacares) spatio-temporal distribution and the environmental conditions in the
western Indian Ocean. Data from logbooks, remotely sensed data, ocean circula-
tion model and in situ observations for three consecutive years (2006-2008) were
used in the analyses. Generalized additive models (GAMs) were applied to exam-
ine the relative influence of various factors on tuna catch per unit effort (CPUE).
The relationships were examined for the following oceanographical variables: tem-
perature at surface, at 30m and at 75m depth, chlorophyll concentration the same
day of the fishing event and 18 days before, sea-level anomaly, mixed layer depth,
and gradient of the thermocline. Additionally, geographical location, fishing vessel
and month were also used as explanatory variables. The results obtained show that
highest CPUEs of both skipjack and yellowfin tuna occurred above 15°N (Somalia
upwelling region) and below 15°S (towards the Mozambique Channel), character-
ized by high chlorophyll-α concentration, and reduced thermocline. However, these
relationships are relatively weak suggesting that tropical tuna dynamics are highly
complex and may also be influenced by factors not included in this study.
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1 Introduction

Tuna and tuna-like species are high valued commercial fish for worldwide
fisheries. Skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus al-
bacares are often referred to as the ”tropical tunas”, due to their distribution
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range throughout the tropical and sub-tropical waters. Skipjack and yellowfin
tuna, the most important species of Indian Ocean tuna catches, are fished
throughout the equatorial waters of the Indian Ocean with the majority of
the catch being taken in the western areas, from about 20°N to 20°S (Fig. 1).
Skipjack and yellowfin tunas are mainly caught by purse seine fleet, but also
by longline and gillnet fisheries. These two species together comprise the most
important component of Indian Ocean tuna catches. Total annual catches of
skipjack tuna averaged 494,100 t between 2004 and 2008. During the same
time period, yellowfin tuna was the second most important, with total annual
catches of 413,100 t. Over 40% and 80% of purse seine yellowfin and skipjack
catches are taken in log-schools (associated with floating objects) respectively
(IOTC-2009-WPTT). The floating objects tend to concentrate large pelagic
fish under them. In consequence, a worldwide fishery has been developed over
these floating objects. Fishing over artificial floating objects, so-called FADs
(Fish Agregating Devices) was developed between the mid eighties and the
early nineties, increasing purse-seine efficiency and subsequently the catches
(Fonteneau et al. 2000; Fron and Dagorn 2000; Delgado et al., 2005). Cur-
rently, tuna aggregations around FADs provide about half of worldwide tuna
catches (Fonteneau et al. 2000). In spite of the economical importance of fish
aggregations around FADs, the knowledge of their role and the relation be-
tween tuna aggregations and the environment around these floating objects is
still scarce.
Several biotic and abiotic factors influence the distribution and local concen-
trations of these species. Although there are many published studies on tropi-
cal tuna, the interaction of FAD-associated tuna aggregations with their local
environment is still unclear. In a recent study, Doray et al. (2009) analyzed
the temporal dynamics of tuna biomass around a FAD deployed in the western
tropical Atlantic in relation to its local biotic and abiotic environment. The
environmental factors included in their analysis could explain 66% of the tuna
biomass variability around the FAD, consisting mainly of skipjack, yellowfin
and blackfin tuna. A similar conclusion reached Fonteneau et al. (2008), who
analyzed catch rates of the purse seiner fleet operating in the western Indian
Ocean in February 2005, when one of the major tuna concentration event
occurred. The authors related this ”extreme fishing event” with high concen-
tration of chlorophyll that occurred 18 days before in the same area. Several re-
searchers have identified correlations between tuna populations processes and
environmental factors (e.g. Lehodey et al., 1998, Bertignac et al., 1998; Goñi et
al., 2005), and some hypotheses have been suggested for the underlying causes
of these correlations. However, no clear relationship has been determined be-
tween local abundance, migration patterns and oceanographic conditions; and
there are still large uncertainties concerning the environmental mechanism ca-
pable of explaining such biological tuna concentrations. Taking into account
that ocean circulation models can provide predictions for some oceanographic
variables, the relationship between tuna populations and oceanographic con-
ditions can be used to predict potential hotspots in the future.
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In the present study, we focus on the relationship between abundance of tuna
aggregated around floating objects, and local biotic and abiotic environment.
To solve such questions, we analyzed up to three years of log books data con-
taining the location and catch per unit effort (CPUE) of sixteen fishing vessels
operating in the Indian Ocean, and the environmental variables corresponding
to the catch day and site. The analysis of three consecutive years enables in-
terannual comparison of abundance and their relation with the oceanographic
conditions. Generalized Additive Models (GAMs) have been applied in order
to assess the effects of environmental factors on tuna aggregations. Due to the
flexibility of GAMs to model relationships between biomasses and variables
describing their environment, they are increasingly been applied to investi-
gate the relation between environmental factors and marine organisms (e.g.
Maravelias, 1999, 2001; Maury et al., 2001; Denis et al., 2002; Katsanevakis
et al., 2009; Murase et al., 2009, Sagarminaga and Arrizabalaga, 2005). Two
aspects of the ecology of tropical tunas, spatio-temporal distribution (pres-
ence/absence data) and local abundance (given its presence), were examined
in this study. The considered species are yellowfin (Thunnus albacares) and
skipjack tuna (Katsuwonus pelamis), as these are the most important species
of Indian Ocean tuna catches.

2 Material and Methods

2.1 Data

2.1.1 Fisheries data

The compilation of logbooks data from sixteen Biscayan purse seiners for the
period of 2006 to 2008 operating in the western Indian Ocean (30°N-30°S, 30°-
80°E) was examined.The sixteen fishing vessels use the same fishing gear and
have similar technical characteristics (length, weight and material). Therefore,
we assumed that the average CPUE represented a similar density of fish. No
survey data are available for the study area so that commercial fishery data
are therefore the only source of information of tuna distribution. This dataset
covers the western part of the Indian Ocean (Fig. 1 and 2), one of the most im-
portant regions for tropical tuna fisheries. Fishing events that were performed
using natural floating objects (generally logs or similar) were used for model
development. In order to use an independent dataset to compare model results
and original data, catch rates employing artificial FADs were used to illustrate
the correspondence between model predictions and observations. The CPUE
is the daily catch rate (in tonnes), which is interpreted as a measure of rela-
tive abundance. Including the parameters influencing local catchability in the
GAMs, such as geographical location and month, enables to interpret daily
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catches as a local abundance index (Maury et al., 2001).

2.1.2 Environmental data

For each fishing event, the following oceanographic data were used: tempera-
ture at surface, at 30m and at 75m depth (further referred to as SST, T30 and
T75), chlorophyll-α concentration the same day of the fishing event and 18 days
before (Ch-α and Ch-α18, respectively), sea-level anomaly (departures of the
sea surface from long term mean, SLA), mixed layer depth (TD), and gradi-
ent of the thermocline (TG). Oceanographic information of the covered region
and time was provided by the NASA Moderate Resolution Imaging Spectro-
radiometer (MODIS, http://modis.gsfc.nasa.gov/ ). The fishing vessel, year
and month were also used as explanatory variables.

2.2 GAMs

2.2.1 Presence-absence analysis

In a first stage, skipjack and yellowfin tuna presence-absence was analyzed.
The presence was modelled as a binomial variable (i.e. positive catches inter-
preted as presence vs null catches interpreted as absence), through a General-
ized Additive Model (GAM). GAMs use smoothing curves to model relation-
ships between response variable and the explanatory variables. They allow for
non-linear relationships, a very common feature in ecological processes, and
therefore are a very flexible tool to build complex, non-linear general models
(Hastie and Tibshirani, 1990). For this first qualitative analysis, a binomial
error distribution and logit-link function (relationship between the response
and the additive predictor) were used to model the relation between presence-
absence of tuna and environmental conditions.

2.2.2 Quantitative analysis

To link tuna distributions with habitat parameters, we assumed that habitats
with higher CPUE would also have greater habitat suitability for that partic-
ular species. With this approach, CPUEs (given tuna presence) were modelled
as a function of the environmental variables. A Gamma error distribution with
a log-link function was found to be adequate for the data modelled here. In
order to remove the effects of catchability variability, the parameters that are
supposed to influence catchability were systematically added in each model.
In a preliminary analysis, an important number of environmental variables
appeared to have a significant effect. To reduce the number of parameters
in the analysis (generally fewer parameters is better as long as we do not
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loose too much information), a principal component analysis (PCA) was used
to describe the linear relationships between the explanatory variables (Fig. 3).
Absolute value of latitude was also included in this PCA. The first two compo-
nents derived from this PCA were then used as synthetic environmental vari-
ables in further analysis, instead of using the original environmental variables
themselves (Dim1 and Dim2). This avoided overestimating the significance of
environmental effects of tuna catch rates, due to possible collinearities in the
environmental variables.

2.2.3 Model selection

Models were fitted in a forward stepwise manner. To find the optimal set of
explanatory variables, the AIC (Akaike Information Criteria) method was used
to measure the goodness of fit (Akaike, 1974). The AIC can be calculated for
each possible combination of explanatory variables and the model with the
smallest AIC can be selected as the ”optimal model”. A forward stepwise
model selection was applied to select the variables. In each step of forward
selection, the degree of smoothing was chosen by cross-validation, which is
a process that automatically determines the optimal amount of smoothing.
The detailed methodology of GAMs is described in Hastie and Tibshirani
(1990). All GAMs were performed using the mgcv 1.3-30 package of R 2.9.0
free software (R Development Core Team, 2009).

3 Results

3.1 Data exploration

For data exploration, CPUEs have been transformed in order to down-weight
the influence of outliers. Generally, skipjack catches are higher than yellowfin
catches for all years, but this difference was more pronounced in 2006 (Fig. 4).
During 2006, skipjack catch rates were considerably higher than in the follow-
ing two years. In a preliminary analysis, The Pearson correlation coefficient
(indicator of linear relationship) between daily catches (indicator of species
local abundance) and environmental variables was calculated to detect rela-
tionships between variables and possible collinearities among explanatory vari-
ables (Table.1). The Pearson correlation coefficients reveals that there might
be an effect of temperature, chlorophyll-α concentration (18 days before) and
depth of thermocline in the abundance of yellowfin and skipjack tuna. Year
may also be an important factor when analyzing fishery data. Skipjack tuna
catches are also correlated with the yellowfin catches (R=0.39). The highest
collinearity was found between temperature at 75m depth and thermocline
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depth (R=0.61). We decide to drop off the variable T75 for further analysis,
as it is meaningless to use a model where some of the explanatory variables
mirror the same information.

A principal component analysis (PCA) was used to describe the relationships
between the environmental variables (Fig. 3). PCA takes a set of variables and
defines new variables that are linear combinations of the initial variables. The
first two axis of the PCA are then used as explanatory variables in future
analysis. The x-axis (Dim1) is interpreted as indicator of well mixed waters of
the southern part of the Indian Ocean, with high chlorophyll concentrations,
low SST and a deep thermocline with low gradient. Y-axis (Dim2) repre-
sents cyclonic condition, with positive sea-level anomaly and high sub-surface
temperatures. The position of the two investigated species in relation to the
environmental variables is illustrated in the same graph. These two axis of the
PCA are used as explanatory variables to build the model, achieving a consid-
erable reduction in dimensionality whilst still accounting for a large proportion
of original variation (more than 60%).

3.2 GAMs

In a first stage the presence-absence of tropical tunas has been modeled using
environmental factors as explanatory variables. For skipjack tuna, a forward
selection criterion gave a model where space and time (absolute value of lat-
itude and month), thermocline depth, chlorophyll-α concentration and the
interaction between gradient of thermocline and chlorophyll-α concentration
18 days before the fishing event were selected. All the other parameters are
not significant. Assuming a binomial error distribution and logit-link function
the optimal model was:

p/ask = c+ s(Lat) + factor(Month) + s(TD) + s(Ch−α ) + s(Ch-α18, TG) (1)

c is the intercept and s(x) the smoothing function. The estimated parameters
and p-values are given below (Table 2). The model can explain 21.8% of the
variance with a R2 of 0.142. The partial fits in Fig. 5a show the contribu-
tion of the individual explanatory variables. The cross-validation estimated 1
degree of freedom for the smoother of chlorophyll α and thermocline depth.
This means that a linear relationship exist between presence of skipjack tuna
and these two environmental variables. Chlorophyll α has a positive relation-
ship with skipjack abundance: the higher the chlorophyll concentration is,
more skipjack tuna are present. In contrast, depth of thermocline is inversely
related to skipjack abundance. The estimated smoother for the variable ’Lati-
tude’ shows a non-linear pattern. The results for the nominal variable ’Month’
indicates that there were significantly less skipjack tunas in April and July
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than in January, which is the baseline value (90% and 99% of confidence level
respectively). For the rest, the difference respect to the baseline (January) was
not significant. In a second stage, the CPUE of skipjack tuna was modelled.
In this case, the explanatory variables that constitute the optimal model are:

CPUEsk = c+ s(Lat) + s(Lon) + s(Dim1) + s(Dim2) + factor(Month) + factor(V essel) (2)

Dim1 and Dim2 correspond to the first two axis of the PCA analysis (Fig. 3).
Dim1 represents well mixed waters of the southern part of the Indian Ocean,
with high chlorophyll concentrations, low SST and a deep thermocline with
low gradient. Dim2 is interpreted as indicator cyclonic condition, with positive
sea-level anomaly and high sub-surface temperatures. The model can explain
40.7% of the variation found in our dataset with a R2 of 0.274. The shape
of the smoothers and their contribution is illustrated in Fig. 5a. Additionally,
standard graphical output for validation of GAMs is shown in Fig. 6. None of
the panels show serious problems, except the response against fitted values,
which should ideally show a straight line.
The same procedure has been used to select the ”optimal” model for yellowfin
tuna. The variables that best explain the data were fishing vessel and year,
sea-level anomaly, chlorophyll concentration and location (longitude).

p/aye = c+ factor(V essel) + factor(Y ear) + s(SLA) + s(Chα) + s(Lon) (3)

All these variables are significant within a 95% of confidence level. The cross-
validation estimated 1 degree of freedom for ’Longitude’, indicating that a
linear relationship exist between yellowfin presence and longitude. Sea-level
anomaly and chlorophyll concentration present a non-linear relationship with
yellowfin presence (Fig. 7a). As the interval of 95% confidence level is very wide
in both edges of the x-axis, we focus on the central part of the plot, where most
of the data-points lie and the confidence bands are narrower. The probability
of yellowfin presence peaks around zero values of sea-level anomaly, and it
is minimum at values of chlorophyll around 0.1mg/m3. Longitude presents a
weak negative slope, meaning that in the western part of the studied area the
probability of yellowfin presence is slightly higher than in the eastern part.
In the second stage, the first two axis of the PCA analysis together with
‘Longitude’ and the nominal variables ‘Month’ and ‘Vessel’ were chosen as the
best explanatory variables. The deviance explained for first and second stage
was, respectively, 25.6% and 43.3%

CPUEye = c+ s(Lon) + s(Dim1) + s(Dim2) + factor(Month) + factor(V essel) (4)

The partial fits in Fig. 7b show the contribution of the individual smoothers,
while taking into account the other variables in the model. The cross-validation
estimated 1 degree of freedom forDim1 andDim2 (linear relationship), whereas
the smoother ’Longitude’ has a nonlinear shape (6.69 degrees of freedom). The
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partial fit of Dim1, indicator of productive waters of the southern part of the
Indian Ocean, has a positive slope, indicating that yellowfin is more abundant
at high latitudes, with a deep thermocline and high chlorophyll concentration.
In contrast, Dim2, indicator of cyclonic conditions is negatively related to
yellowfin abundance. The model validation includes QQ-plots and histogram
of residuals, residuals versus fitted values and model fit (fitted values versus
observed values). The first three do not show any problem. The last panel,
response versus fitted values, should ideally lie on a straight line.

3.3 Prediction

The distribution of the GAM-estimated local abundance index of skipjack and
yellowfin tunas has been compared to monthly fishery data (Fig. 9 and 10).
For the comparison, we used an independent dataset based on fishing events
that were performed using artificial FADs. In order to prevent trends due to
different number of observations per month, a mean catch rate has been cal-
culated for each month. The mean catch rate is then used as an indicator
of fishing intensity during that month. During the months with high catches
(between August and November), the predicted value is also larger (clearly
noticeable in case of skipjack tuna). The main activity of the selected fleet is
directed to skipjack tuna, and consequently, CPUEs of yellowfin tuna present
discontinuities within the studied period. Consequently, these discontinuities
in fishing events make the comparison between observed and predicted values
difficult. Moreover, the monthly catches using artificial and natural FADs dif-
fer considerably in magnitude.
For skipjack tuna, a noteworthy seasonal pattern can be discerned in both
observed data and GAM-based predictions. This seasonal pattern using arti-
ficial FADs for fishing is similar to that derived from catches using natural
FADs. Maximum CPUEs of skipjack tuna based of natural FADs occurred
in September (Fig. 4), whereas with the use of artificial FADs occurs between
August and November (Fig. 9).The order of magnitude of the predicted values
are rather lower than those from logbooks data. However, the maxima pre-
dicted for August-November in consecutive years are consistent with observed
values.

4 Discussion

Although tropical tunas are a very important economical resource for the purse
seiners fleet operating in the Indian Ocean, there is little detailed information
on their biology and ecological preferences. The present study has showed the
existence of environmental and habitat association of tropical tunas in the
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western Indian Ocean using two-stage GAMs.
Dorey et al. (2008) have demonstrated that fish abundance decreased with the
distance from the head of the FAD, suggesting that environmental descriptors
are not directly forcing the FAD tuna concentration, but might be indica-
tive of migratory patterns. The depth and gradient of thermocline together
with the chlorophyll concentration seem to be the most important factors
controlling the presence of skipjack tuna. The geographical location however
influences its local abundance (directly related to CPUE). PCA allowed the
complex oceanographic environment to be represented by a small set of predic-
tors, while preserving most of the original variance. The first two components
of the PCA significantly influence the CPUE of both skipjack and yellowfin
tunas. in the range where interval of confidence is narrowest a positive rela-
tion exist between skipjack CPUEs and Dim1, which represents cold and well
mixed waters, with high chlorophyll concentration from the southern part of
the Indian Ocean. Tuna may have preference for these conditions to feed on
the trophic chain generated by the high primary productivity. The negative
relation between Dim2 and tuna CPUEs suggest that cyclonic conditions are
not a suitable habitat for skipjack tuna. This is consistent with previous stud-
ies showing that tuna biomass decreased under the presence of an eddy in a
moored FAD deployed in the Caribbean (Doray et al., 2009).
The predictions carried out with an independent fishery dataset in order to
test the model are much lower than those reported by the logbooks. Never-
theless, the models can capture the high peaks occurring between August and
November, related to large tuna aggregations (CPUEs per fishing event are
also larger during these month). It is therefore useful to find potential hotspots
for tuna aggregations.
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5 Figures and Tables

Table 1
Pearson correlation coefficients (indicator of linear relationship) between skipjack
(SK) (Katsuwonus pelamis) and yellowfin (YE) (Thunnus albacares) tuna catches
and the selected environmental variables for the Indian Ocean: Temperature at
surface (SST), and in the water column (T30 and T75), chlorophyll concentration
at the time of fishing (Ch-α) and 18 days before (Ch-α18), thermocline depth (TD)
and gradient (TG), sea-level anomaly (SLA), year, month and location (absolute
latitude and longitude).

SK YE SST T30 T75 Ch-α Ch-α18 TD TG SLA Year Month Long

YE 0.39

SST 0.11 0.23

T30 0.24 0.32 0.49

T75 0.24 0.18 <0.1 0.51

Ch-α <0.1 0.13 0.50 0.39 <0.1

Ch-α18 0.19 0.27 0.54 0.48 <0.1 0.54

TD 0.19 <0.1 0.54 <0.1 0.61 0.46 0.30

TG <0.1 <0.1 0.30 <0.1 0.45 0.19 0.35 0.23

SLA 0.13 0.19 <0.1 0.38 0.41 <0.1 0.15 0.38 0.11

Year 0.23 0.21 <0.1 0.31 0.27 0.12 0.25 0.22 <0.1 0.25

Month <0.1 0.12 0.41 0.31 <0.1 0.36 0.39 0.27 0.24 0.34 0.31

Long <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.10 <0.1 <0.1 0.31 0.48

Lat <0.1 <0.1 <0.1 <0.1 0.11 <0.1 0.11 <0.1 0.18 0.20 0.55 0.43 0.53
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Table 2
Summarized results for the optimal GAMs selected for skipjack and yellowfin tunas
caught in the western Indian Ocean. In a first-stage presence/absence of tuna has
been analyzed, and in the secong stage their abundance (given presence).

Skipjack tuna (Katsuwonus pelamis) Yellowfin tuna (Thunnus albacares)

Presence-absence CPUE Presence-absence CPUE

Family Binomial Gamma Binomial Gamma

Link-function Logit Log Logit Log

Adjusted R2 0.142 0.274 0.265 0.217

Deviance esplained (%) 21.8 40.7 25.6 43.3

Edf. p-value Edf. p-value Edf. p-value Edf. p-value

factor(Month) 1 1 11 4.1·10−6 - - 11 5.48·10−5

factor(Vessel) - - 15 2·10−16 15 2.05·10−12 15 8.75·10−5

factor(Year) - - - - 2 5.92·10−5 - -

s(Latitude) 4.32 1.12·10−3 5.544 3.68·10−6 - - - -

s(TD) 1.00 7.66·10−3 unused unused - - unused unused

s(Ch-α) 1.00 0.05874 unused unused 6.367 0.03652 unused unused

s(Ch-α,TG) 15.1 0.0731 unused unused - - unused unused

s(Long) - - 8.238 2.59·10−5 1 0.0466 6.686 6.03·10−5

s(SLA) - - - - 6.445 1.21·10−3 - -

s(Dim1) unused unused 3.695 1.41·10−3 unused unused 1 1.83·10−5

s(Dim2) unused unused 2.358 7.7·10−7 unused unused 1 2.28·10−6
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Fig. 1. Mean daily catches of skipjack and yellowfin tunas in the western Indian
Ocean by the Biscayan fleet during the period 2006-2008. Original dataset has been
gridded in a 1°x 1°array and smoothed for the purpose of better visualization.

Fig. 2. Location of natural floating objects (LOGs) and artificial devices (FADs)
used in this study
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Fig. 3. First two axis of obtained by PCA for the environmental variables: tem-
perature at surface (SST), and in the water column (at 30m and at 75m depth),
chlorophyll concentration at the time of fishing (Ch-α) and 18 days before (Chα18),
thermocline depth (TD) and gradient (TG), sea-level anomaly (SLA), and latitude
(absolute value). The position of the two investigated species in relation to the
environmental variables is printed in green.
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Fig. 4. Boxplot of logarithmic transformed CPUEs for the two tuna species: Skipjack
(Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares). Comparison between
years (upper panels) and between months (lower panels). The 25% and 75% quartiles
define the end of the boxes, and points outside these values are potential outliers.
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Fig. 5. (a): Estimated smoothing curves obtained by the GAM applied to pres-
ence-absence data of skipjack tuna. (b): Estimated smoothing curves obtained by
the GAM applied to positive CPUE data of skipjack tuna using the first two dimen-
sions of the PCA as explanatory variables. The x-axis shows the values of the ex-
planatory variables (TD: depth of thermocline; (Ch-α): Chlorophyll concentration)
and the y-axis the contribution of the smoother to the fitted values. The dashed
lines represent 95% confidence bands. The tick marks along the x-axis indicate the
values of the observed data-points.
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Fig. 6. Diagnostic plots for the GAM model for skipjack tuna when fitting non-zero
catch rates. The QQ-plot and the histogram of the residuals are used to verify nor-
mality. The plot of standardized residuals against fitted values assesses homogeneity.
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Fig. 7. (a): Estimated smoothing curves obtained by the GAM applied to pres-
ence-absence data of yellowfin tuna. (b): Estimated smoothing curves obtained by
the GAM applied to abundance data of yellowfin tuna using the first two dimensions
of the PCA as explanatory variables. The x-axis shows the values of the explanatory
variables (SLA: Sea-level anomaly; Cha: Chlorophyll concentration) and the y-axis
the contribution of the smoother to the fitted values. The dashed lines represent
95% confidence bands. The tick marks along the x-axis indicate the values of the
observed data-points.
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Fig. 8. Diagnostic plots for the GAM model for yellowfin tuna when fitting non-zero
catch rates. The QQ-plot and the histogram of the residuals are used to verify nor-
mality. The plot of standardized residuals against fitted values assesses homogeneity.
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Fig. 9. Temporal evolution of mean catch rates during the studied period for skipjack
tuna (Katsuwonus pelamis) employing artificial FADs. The upper panel represents
total monthly catches (tonnes), whereas the lower panel reproduces average CPUE
(tonnes per fishing event). Observed values (blue) versus GAM predicted values
(black).
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Fig. 10. Temporal evolution of mean catch rates during the studied period for yel-
lowfin tuna (Thunnus albacares) employing artificial FADs. The upper panel repre-
sents total monthly catches (tonnes), whereas the lower panel reproduces average
CPUE (tonnes per fishing event). Observed values (blue) versus GAM predicted
values (black).
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