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Abstract: Data collected from a longline fishery in the Indian Ocean were used to evaluate 

the performance of "deterministic habitat based standardization (detHBS)" method for the 

CPUE standardization. The habitat preference indices of the yellowfin tuna (Thunnus 

albacares) were estimated for different classes of depth, temperature, chlorophyll-a, and 

dissolved oxygen classes. The ―detHBS‖ was applied to standardizing the yellowfin tuna 

CPUE based on the habitat preference indices of the yellowfin tuna. The nominal CPUE and 

normalized nominal CPUE were compared with the standardized CPUE and normalized 

standardized CPUE, respectively, using the paired two-sample t-test. The results showed that 

(1) nominal CPUE was greatly different from standardized CPUEs; (2) there were no 

differences between normalized nominal CPUE and normalized standardized CPUEs 

estimated based on the data of depth, temperature, and DO classes；(3) there was difference 

between normalized nominal CPUE and normalized standardized CPUE estimated based on 

the data of chlorophyll-a data. This study suggests that ―detHBS‖ improves the precision of 

CPUE standardization effectively. The depth data were most important for ―detHBS‖ in 

estimating CPUE of yellowfin tuna.  

 

Keywords: Thunnus albacares; CPUE standardization; deterministic habitat based 

standardization; longline fishery; the Indian Ocean 

 

                                

*Corresponding author: Liming Song, College of Marine Sciences, Shanghai Ocean University, 999 

Huchenghuan Road, Lingangxincheng Shanghai 201306, China. Tel.: +86 21 61900311; fax: +86 21 



IOTC-2010- WPTT-50 

 2 

61900301. E-mail address: lmsong@shou.edu.cn 

 

1. Introduction 

Many methods have been developed and applied to standardizing catch per unit effort 

(CPUE), such as Generalized Linear Model（GLM; Okamoto and Miyabe, 2003; Okamoto et 

al., 2004), Generalized Additive Model（GAM; Bigelow et al., 1999; Wise et al., 2002), and 

statistical habitat based standardization（statHBS; Bigelow et al., 2003). The GLM and GAM  

are two of the most commonly used methods (Bigelow et al., 1999; Punt et al., 2000; 

Campbell, 2004 ) with CPUE and corresponding environmental variables of a defined spatial 

and temporal scales being used as input data (Tian et al., 2009). Both models are the 

extensions of multiple linear regressions, but the environmental variables in both models may 

not preferably reflect the fluctuations of the depth in which the fish inhabit.  

The fluctuations of the depth in which the fish inhabit might result from the fluctuations 

of ocean thermal structure (Bigelow et al., 1999). Thus, the catch rates of longline may not 

reflect the resource abundance which might fluctuate with the depth (Punsly and Nakano, 

1992). The statHBS is more flexible, which allows for additional components on linear and 

nonlinear models being added to the model (Hinton et al., 2001). However, this does not 

necessarily mean that the statHBS can produce better estimates than other methods. The 

quality of the estimates may be influenced by the data available to modeling (Hinton and 

Maunder, 2003). A deterministic habitat-based standardization (detHBS) method was initially 

developed by Hinton and Nakano (1996) for incorporating environmental variables, fishing 

gear, and species habitat preference into CPUE standardization. The detHBS have not 

frequently been applied to the CPUE standardization of tuna longline fishery in most oceans 

except for the Pacific Ocean (Bigelow et al., 2003). 

Much controversy surrounds the applications of the detHBS method (Ward and Myers, 

2005; Prince and Goodyear, 2006). The poor performance of detHBS was attributed to the 

inaccuracy of hook depth estimates and differences between the distribution of pelagic 

species and their vulnerability to longline gear (Ward and Myers, 2006; Bigelow and 

Maunder, 2007). For the CPUE standardization of tuna longline fishery, hook depth is one of 
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the most influential factors in quantifying habitat preferences of fish species. Nishida et al. 

(2003) applied an approach of intergrated GLM and Habitat-based Model (HBM) to 

standardizing the CPUE of yellowfin tuna in the Indean Ocean. They included the depth 

distribution of longline gear and vertical distribution of yellowfin tuna into the model. The 

result showed that the HBM-GLM integrated approach was more effective than the GLM 

approach (Nishida et al., 2003).  

It is necessary to evaluate the effectiveness of an approach in standardizing CPUE using 

environmental variables. To evaluate the effectiveness of the detHBS method in improving the 

precision of CPUE standardization, we applied hook depth prediction model (Song, 2008) to 

estimate the habitat preference indices of yellowfin tuna in specific depth, temperature, 

chlorophyll-a, and dissolved oxygen (DO) classes based on the environmental data and catch 

and fishing effort data. We applied the ―detHBS‖ (Hinton and Nakano, 1996; Bigelow et al., 

2003) to standardizing the CPUE of yellowfin tuna, and then compared the results by the 

paired two-sample t-test.  

 

2. Material and methods 

2.1. Materials 

Details of survey fishing vessels, fishing gear and deployment methods, fishing time 

and area, instrumentations, and sampling methods were provided in Song et al. (2008, 2009) 

and Song and Zhou (2010). 

Fisheries data, fishing operational parameters, and environmental data were collected in 

the survey. Of the 527 fish caught in the survey, 360 fish were caught by Huayuanyu No.18, 

and 167 fish were caught by Huayuanyu No.19. The hook code with which the fish was 

caught was recorded for 371 fish. Of the 371 fish, 314 fish were caught by Huayuanyu No.18, 

and 57 fish were caught by Huayuanyu No.19. Water temperature, chlorophyll-a, and DO 

vertical profiles were measured for 83, 28, and 28 sites, respectively. These environmental 

variables were measured using Submersible Data Logger (XR-620), Temperature Depth 

Recorder (TDR 2050) (RBR Co., Canada), and Conductivity Temperature Depth Recorder 

(SBE37SM, SeaBird Co., USA) after the gear was deployed. 

Of the 527 fish caught in the survey, we measured depth for 293 fish (a coverage of 
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55.60 %), temperature for 288 fish (a coverage of 54.65 %), chlorophyll-a, and DO for 181 

fish (a coverage of 34.35 %).  

 

2.2. Analytical methods  

We caculated the nominal CPUE of yellowfin tuna in specific depth, temperature, 

chlorophyll-a, and DO classes by applying the hook depth prediction model (Song, 2008). We 

estimated habitat preference indices of yellowfin tuna and applyed the ―detHBS‖ (Hinton and 

Nakano, 1996; Bigelow et al., 2003) to standardiz the nominal CPUE of yellowfin tuna in the 

specific depth, temperature, chlorophyll-a, and DO classes. Because the vessel‘s particulars 

and the experience of two captains of two fishing vessels were very similar, we assumed that 

there were the same impacts on the CPUE of yellowfin tuna from the factors of the vessel‘s 

particular and the experience of captain. The impacts on the CPUE of yellowfin tuna from the 

environmental variables were different. When we standardized the CPUE of yellowfin tuna, 

the impacts on the CPUE of yellowfin tuna from the factors of the vessel‘s particular and the 

experience of captain could be ignored and the impacts of different variables on CPUE of 

yellowfin tuna would be removed. The data processing procedure was shown in Fig.1.  
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Fig.1  The data processing procedure 

 

We applied the following hook depth prediction models (Song, 2008) to predict the hook 

depth,  



IOTC-2010- WPTT-50 

 5 

0.078 0.010 0.1531.2023 (sin )ptq w tqD V q D      (r=0.8074)      (1) 

0.056 0.075 0.1060.9908( )peq g eqD V q M D       (r=0.7625)      (2) 

for the traditional gear and experimental gear, respectively. In Equation (1), 
ptqD is the 

predicted hook depth of traditional gear for the hook position code q; Vw  is the wind speed; 

sin   is the sine of angle of attack  ; q is the hook position code; and
tqD is the theoretical 

catenary hook depth of traditional gear for the hook position code q. In Equation (2), peqD   is 

the predicted hook depth of experimental gear for the hook position code q ; gV 
  is the 

experimental gear drifting speed; q  is the hook position code; M is the weight of the 

messenger weight; and eqD   is the theoretical catenary hook depth of experimental gear for 

the hook position code q . 

The data for the hook depth were grouped into 10 depth classes with an interval of 40 m 

(40-80 m, 80-120 m, … 360-400 m). The data for the temperature were grouped into 20 

classes with an interval of 1 °C (9-10 °C, 10-11 °C, … 28-29 °C). The data for the 

chlorophyll-a were grouped into nine classes with an interval of 0.01 µg L
-1

 (0.02-0.03 µg L
-1

, 

0.03-0.04 µg L
-1

, … 0.09-0.10 µg L
-1

) and the other classe of 0.10-1.50 µg L
-1

. The data for 

the DO were grouped into 10 classes with an interval of 0.5 mg L
-1

 (0.0-0.5 mg L
-1

, 0.5-1.0 

mg L
-1

, … 4.5-5.0 mg L
-1

) . Based on the predicted hook depth, we calculated temperature, 

chlorophyll-a, and DO from the profiles mensured using SBE37SM, TDR2050 and XR-620, 

respectively, for each hook and fish. We applied frequency statistics (Tang and Feng, 2002) 

to calculate the numbers of hook and fish at each class of depth, temperature, chlorophyll-a, 

and DO, respectively.  

The following equation was used to calculate the catch rates of yellowfin tuna at a 

specific depth, temperature, chlorophyll-a, and DO class: 














4

1

4
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eijtij

e

eijtij
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NN

CPUE
ij                                  (3)                                        

where Ntij and Neij are the numbers of fish caught by traditional gear and experimental gear in 
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i class and j environmental variable, respectively; and Htij and Heij are the numbers of hook 

for traditional gear and experimental gear in i class and j environmental variable, respectively. 

For variable depth, j=1 and depth class i=1,2,3,……10; for variable temperature, j=2 and 

temperature class i=1,2,3,……20; for variable chlorophyll-a, j=3 and chlorophyll-a class 

i=1,2,3,……9; and for variable DO, j=4 and DO class i=1,2,3,……10 (Song, 2008; 2009). 

The four groups of experimental gear are indexed as e=1, 2, 3, and 4.  

We estimated habitat preference indices of yellowfin tuna based on the nominal CPUE 

data at a specific class of depth, temperature, chlorophyll-a, and DO. We calculated the 

effective fishing effort of each operation by applying the ―detHBS‖ (Biglow et al., 2002) 

using the following equation: 

1

rj r rij ij

i

f E h p




                                          (4) 

where frj is the effective fishing effort for the r operation in j environmental variable (i.e., j=1 

for depth, j=2 for temperature, j=3 for chlorophyll-a, and j=4 for DO); Er is the nominal 

fishing effort for r operation (thousand hooks); λ is the numbers of class; 
rijh

 
is the 

proportion of hook number in i class for r operation in j environmental variable; and
ijp is the 

habitat preference index of yellowfin tuna in i class and j environmental variable calculated 

using the following equation: 

1

100%ij

ij

ij

i

CPUE
P

CPUE









                                       (5)                                                  

where 
ijCPUE is the nominal CPUE of yellowfin tuna in i class and j environmental 

variable. 

The equation to calculate the nominal CPUE of yellowfin tuna in each operation can be 

written as follows: 

1000r
rn

r

N
CPUE

E
                                          (6)                                             

where rnCPUE is the nominal CPUE of yellowfin tuna in r operation; and rN is the 

numbers of fish caught in r operation. 

The equation to standardize the CPUE of yellowfin tuna in each operation can be written 

as follows: 
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1000r
rsj

rj

N
CPUE

f
                                        (7)                                                 

where 
rsjCPUE is the CPUE of yellowfin tuna in r operation standardized based on the data 

of j environmental variable. 

The nominal CPUE of yellowfin tuna in each operation was normalized using the 

following equation: 

rn
rn

rnm

CPUE
R

CPUE
                                        (8)                                             

where Rrn is the normalized value of nominal CPUE of yellowfin tuna in r operation. 

rnmCPUE  is the maximum value among all of rnCPUE . 

The standardized CPUE of yellowfin tuna in each operation was normalized using the 

following equation: 

rsj

rsj

rsjm

CPUE
R

CPUE
                                        (9)                                            

where Rrsj  is the normalized value of the standardized CPUE of yellowfin tuna in r operation 

j environmental variable. rsjmCPUE  is the maximum value among all of 
rsjCPUE . 

We compared the nominal CPUE with the CPUEs standardized using depth, temperature, 

chlorophyll-a, and DO classes and the normalized nominal CPUE with the normalized 

standardized CPUEs using the paired two-sample t-test (Tang and Feng, 2002). 

 

3. Results  

3.1 Hook distribution in a given class of depth, temperature, chlorophyll-a, and DO 

Hook distributions in specific classes of depth, temperature, chlorophyll-a, and DO were 

shown in Fig.2. Most of the hooks were distributed in the depth class of 120-360 m (90.22 %), 

and the number of hooks distributed in the depth class of 280-320 m was the highest (19.42 %; 

Fig.2a). Most of the hooks were distributed in the temperature class of 10～16 ℃ (89.63 %), 

and the number of hooks distributed in the temperature class of 11～12 ℃ was the highest 

(35.15 %; Fig.2b). Most of the hooks were distributed in the chlorophyll-a class of 0.03～

0.05 µg L
-1

 (88.71 %), and the number of hooks distributed in the chlorophyll-a class of 
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0.04～0.05 µg L
-1

 was the highest (45.90 %; Fig.2c). Most of the hooks were distributed in 

the DO class of 1.5～3.5 mg L
-1

 (77.84 %), and the number of hooks distributed in the DO 

class of 2.5～3.0 mg L
-1 

was the highest (40.40 %; Fig.2d). 

 

3.2 Nominal CPUEij and preferences (Pij) of the yellowfin tuna  

Nominal CPUEij and preferences (Pij) of the yellowfin tuna in specific depth classes from 

98 operations were shown in Fig.3a and Fig.4a, respectively. For the depth classes from 80 to 

200 m, nominal CPUEij was relatively higher, which was the prefered depth of yellowfin tuna. 

For the depth class of 80～120 m, nominal CPUEij (8.53 fish per thousand hooks) was the 

highest, which was the most prefered depth of yellowfin tuna (30.19 %). 

a                                     b 

 

  

c                                     d 

     
Fig.2  Hook distribution in the specific depth, temperature, 

dissolved oxygen, and chlorophyll-a classes 

 

Nominal CPUEij and preferences (Pij) of the yellowfin tuna in specific temperature 

classes from 93 operations were shown in Fig.3b and Fig.4b, respectively. Fourty eight 

operations were from Huayuanyu No.18, and 45 operations were from Huayuanyu No.19. 
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Nominal CPUEij of the yellowfin tuna increased with the temperature in the range of 12～

18 ℃. Nominal CPUEij (10.01 fish per thousand hooks) and preferences (Pij) (14.49 %) of the 

yellowfin tuna were the highest in the temperature class of 17～18 ℃. 

Nominal CPUEij and preferences (Pij) of yellowfin tuna in specific chlorophyll-a classes 

from 28 operations were shown in Fig. 3c and Fig.4c, respectively. Nominal CPUEij (17.63 

fish per thousand hooks) and preferences (Pij) (29.20 %) were relatively higher in the 

chlorophyll-a class of 0.09 ～ 0.10 µg L
-1

.  

a                                b 

 

   c                              d 

       
Fig.3  The yellowfin tuna nominal CPUEij in specific depth, temperature, 

chlorophyll-a, and dissolved oxygen classes 
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Fig.4  The yellowfin tuna preferences (Pij) in specific depth, temperature, 

chlorophyll-a, and dissolved oxygen classes 

Nominal CPUEij and preferences (Pij) of the yellowfin tuna in different classes of DO 

from 28 operations were shown in Fig.3d and Fig.4d, respectively. Nominal CPUEij (average 

4.14 fish per thousand hooks) and preferences (Pij) (average 30.19 %) were steadier in the DO 

class of 1.5～3.5 mg L
-1

. Nominal CPUEij (14.38 fish per thousand hooks) and preference (Pij) 

(44.53 %) were the highest in the DO class of 1.0～1.5 mg L
-1

.  

 

3.3. The nominal and standardized CPUE for each operation  

For different CPUE values derived from the data of Huayuanyu No.18 nominal CPUE 

had the lowest value. The standardized CPUE estimated based on temperature data (10.90～

1261.04 fish per thousand hooks) was the highest, but lower based on chlorophyll-a data 

(10.58～502.43 fish per thousand hooks) and depth data (4.82～467.50 fish per thousand 

hooks). The standardized CPUE estimated using the DO data (4.28～251.82 fish per 

thousand hooks) was the lowest (Fig.5a).  

a                                   b       

 

c                                    d        
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Fig.5 The nominal CPUE and standardized CPUE of yellowfin tuna (a: Huayuanyu No. 18 ; c: 

Huayuanyu No. 19) and the normalized nominal CPUE and normalized standardized CPUE of yellowfin tuna 

(b: Huayuanyu No. 18 ; d: Huayuanyu No. 19) in the operations 

For different CPUE data of Huayuanyu No.19, nominal CPUE was the lowest. The 

standardized CPUE estimated using temperature data (10.19～257.79 fish per thousand hooks) 

was relatively high; but lower based on depth data (4.02～95.57 fish per thousand hooks; 

Fig.5c).  

Based on the results of paired two-sample t-test, the nominal CPUE were significantly 

different from the standardized CPUEs estimated based on the data of depth, temperature, 

chlorophyll-a and DO classes (p <0.05). 

 

3.4 Normalized nominal and standardized CPUEs for each operation  

The normalized nominal CPUE and normalized standardized CPUE of yellowfin tuna 

for Huayuanyu No. 18 and 19 were shown in Fig.5b and Fig.5d, respectively. For Huayuanyu 

No. 18, the normalized nominal CPUE relatively consistented with the normalized 

standardized CPUE which were estimated based on depth, temperature, chlorophyll-a, and 

DO data (Fig.5b). For Huayuanyu No. 19, the normalized nominal CPUE was consistent with 

the standardized CPUE which were estimated based on depth, temperature, chlorophyll-a , 

and DO data (Fig. 5d).  

Based on the results of paired two-sample t-test, there were no significant differences 

between normalized nominal CPUE and normalized standardized CPUEs estimated based on 

the data of depth, temperature, and DO classes (p≥0.05). There was difference between 

normalized nominal CPUE and normalized standardized CPUE estimated based on the data 

of chlorophyll-a data (0.001≤p=0.002≤0.05). 
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4. Discussion 

4.1 Reliability of the hook distribution in specific depth classes 

In this study, the reliability of hook distribution in specific depth, temperature,  

chlorophyll-a, and DO classes and nominal CPUE were improved (Song and Gao, 2006). 

Many studies applied catenary curve equation (Nishida et al., 2003) to calculate the hook 

depth. These studies assumed that the longline gear was not affected by environmental factors 

(Hanamoto, 1987, 1974; Suzuki et al., 1977; Gong et al., 1989; Grundinin, 1989; Ward et al., 

1996 and Nakano, 1997). In fact, fishing depth of hooks would be shoaled because of the 

influence of oceanic environmental factors. The fishing depth of hooks tended to be shallower 

than the catenary hook depth (Saito, 1973; Hanamoto, 1974; Nishida, 1990; Boggs, 1992; 

Mizuno et al., 1998, 1999; Bigelow et al., 2006). The drifting speed (Vg), wind speed (Vw), 

wind direction (Cw), angle of attack (


), wind angle (Qw), and hook position code (q) of the 

fishing gear were included in the development of the predicted hook depth model, leading to 

improving the estimation precision of hook depth. The correlation coefficients between the 

predicted hook depth and the TDR-mensured hook depth for traditional and experimental 

fishing gears were 0.8074 and 0.7625, respectively. 

 

4.2  The reliability of habitat preference indices  

    The reliability of habitat indices estimated for the yellowfin tuna in specific depth, 

temperature, chlorophyll-a, and DO classes was improved. The relationship between the 

distribution of yellowfin tuna and the environmental variables (habitat selection) was mainly 

studied by analyzing the data of archival tag (Biglow et al., 2002), acoustic telemetry (Cayre, 

1991; Cayre and Marsac, 1993; Marsac, 1998), and the mesoscale World Ocean Database 

(Cayre and Marsac, 1993). The number of fish which were analyzed in those studies was 

limited in both archival tag and acoustic telemetry. That might not express the habitat 

preference of yellowfin tuna in general. For the studies using mesoscale oceanographic or 

(and) long term average data, the temporal and spatial resolutions also need to be improved 

(Song et al., 2008). 

The habitat preference indices of this study were estimated based on the nominal CPUE 

for each class of depth, temperature, chlorophyll-a, and DO. Bach et al. (2003) suggested that 
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instrumented longlines could be used to study the vertical behavior of pelagic species. 

Longlines monitored by TDRs were superior in some ways to acoustic telemetry or archival 

tagging because longline monitoring can sample a large number of individuals of different 

sizes and species in different environmental conditions. They also suggested that the vertical 

distributions of the catches were a good indicator of natural depth distributions of fish if the 

entire depth ranges of various species were within the range of depths fished by longline 

hooks. In this study, the fishing depth of hook was from 40 to 400 m, which basically covered 

the whole vertical distribution range of yellowfin tuna (Song, et al., 2008).  

 

4.3 Effectiveness of “detHBS” 

The ―detHBS‖ was found to be effective in this study. There was large difference between 

the nominal CPUE and the standardized CPUEs which were estimated based on the data of 

depth, temperature, chlorophyll-a, and DO classes. The normalized standardized CPUEs have 

almost similarly trend, it indicated that one of the data set of depth, temperature, 

chlorophyll-a, and DO can be used to standardize CPUE. There were differences between the 

distribution of pelagic species and their vulnerability to longline gear (Ward and Myers, 2006; 

Bigelow and Maunder, 2007). In this study, the targeting species was bigeye tuna (Thunnus 

obesus) while the yellowfin tuna was the bycatch species. Since the mid-1970s, the longline 

fishing methods were changed from mainly ‗regular‘ sets (5–6 hooks between  floats) to 

‗deep‘ sets (> 10 hooks between floats) (Suzuki et al., 1977; Hanamoto, 1987). The 

effectiveness of longline gear in catching yellowfin tuna was decreased by this innovation 

because the inhabiting depth of yellowfin tuna was shallower than that of the bigeye tuna 

(Song et al., 2008; 2009). The effective fishing efforts for the yellowfin tuna were less than 

those of bigeye tuna or the nominal efforts. The standardized CPUE of yellowfin tuna should 

be higher than that of the nominal CPUE (Figs. 5a, 5c). The reliability of hook distribution, 

and the reliability of habitat indices estimated for the yellowfin tuna were improved. The 

―detHBS‖ interpreted the effect of physiological, behavioural, and environmental data to 

longline fishery catch and effort (Bigelow et al., 2002). Thus the ―detHBS‖ was effective. 

The precision of standardized CPUE of yellowfin tuna could be improved if the inputs of 

―detHBS‖ were estimated based on the depth, temperature, chlorophyll-a, and DO classes 
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data. There was no significant deference between normalized nominal CPUE and normalized 

standardized CPUEs which were estimated based on the data of depth, temperature, and DO 

classes. This might result from only usage of two vessels‘ data; short time duration (four 

months); small variability of the environmental variables; and fixed gear configuration in this 

study. There was diference between normalized nominal CPUE and normalized standardized 

CPUE estimated based on the data of chlorophyll-a data. This might result from the sampling 

stations about the chlorophyll-a data were relatively less and the prefered chlorophyll-a classes 

were relatively narrower (0.07 ～ 0.08 µg L
-1

 , and 0.09 ～ 0.10 µg L
-1

). There was 

relatively higher bias for the chlorophyll-a data. 

 

4.4 The optimum data set in standardizing CPUE 

This study suggests that the depth data set was the optimum data set in standardizing 

CPUE. The depth distribution of longline gear was considered as the combined effects of set 

configuration, between-set variability in hook distribution and shoaling due to ocean currents 

(Bigelow et al., 2002). The variation in fishing depths of longlines and the depth of the 

preferred habitat of yellowfin tuna can be used to standardize longline CPUE in order to 

provide an unbiased estimator of yellowfin tuna relative abundance. We suggest to using the 

depth data set to standardize CPUE if the ―detHBS‖ was used.  

 

4.5 The effect of the “detHBS” 

Habitat preference and limitation were often used to evaluate the effects of 

environmental variables on CPUE in pelagic longline fisheries. The CPUE that was not 

standardized may lead to misunderstanding of subsequent stock assessment (Nishida et al., 

2003). A reliable standardization model for CPUE can improve the accuracy for the tuna 

stock assessment and management. In this study, the ―detHBS‖ based on depth data set in 

standardizing CPUE can reliably describe the resource abundance of yellowfin tuna. The 

fisheries data are usually grouped at a defined spatial and/or temporal scale, and CPUE is 

commonly defined by the total catch versus the corresponding fishing effort over a specific 

spatial scale and time (Hilborn and Walters, 1992). Different gears tend to have different 
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impacts on the same habitat, and different habitats have different response to the same gear 

(Jennings and Revill, 2007). If a hook is fished in an environment that is preferred by the 

species, then it has a higher probability of capturing that species (Hinton and Maunder, 2003). 

The effective fishing efforts for the yellowfin tuna calculated by ―detHBS‖ might reliably 

describe the fishing power that is fishing for yellowfin tuna. Therefore, the different 

catchability among different fishing vessel, and between-set can be removed by ―detHBS‖. 

The results in different annual and monthly patterns of standardized CPUEs will be different 

by using different models in standardizing CPUEs, thus affecting the interpretation of 

temporal variability in the yellowfin tuna population and greatly influencing the management 

measure. The reliable describe of the standardized CPUEs is the foundation of the sustainable 

utilization of the resources.  
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