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Abstract: Study on spatial distribution of tunas and tuna-like species will be benefit to the 

conservation and management of fishery resources, and the promotion of fishing condition 

forecasting technology. A survey on tuna fishery has been carried out aboard of the longliners 

Huayuanyu No. 18 and Huayuanyu No. 19 in the Indian Ocean in 2005. Based on the survey data 

collected by Huayuanyu 18, the vertical profile data of temperature, salinity, chlorophyll-a 

concentration, dissolved oxygen concentration and the catch rate data of yellowfin tuna (Thunnus 

albacares) were applied to develop the “Integrated Habitat Index (IHI)” models by the quantile 

regression method. The data collected by Huayuanyu No.19 were also applied to validate these 

models. The results showed that the optimal inhabitting depth of yellowfin tuna was from 80 to 

160 m in the survey area; the IHI in the area of 3°30′N～8°30′N, 62°E ～64°E was the highest; 

the IHI in the area of 3°N～6°N, 64°E～70°E area was realative higher; the main environmental 

variables which affected the distribution of yellowfin tuna in specific depth stratum were different; 

the weighted average of temperature and dissolved oxygen concentration effected to the spatial 

distribution of yellowfin tuna significantly. The quantile regression method could be used to study 

the pelagic species spatial distribution. 
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1. Introduction 

There are many methods to study organisms’ habitats (environment), e.g., general linear 

regression models (Clark et al., 1999; Labonne et al., 2003), general linear additive models 

(Swartzman et al., 1992; Maravelias, 1999), multiple linear regression models (Beamish and 

Lowartz, 1996), regression tree models (Norcross et al., 1997; Turgeon and Rodriguez, 2005), 

logistic regression models (Norcross et al., 1999; Guay et al., 2000;Turgeon and Rodríguez, 2005), 

habitat suitability index (HSI) models (Brown et al.,2000;Cade and Noon,2003; William and 

Maughan,2004), and quantile regression models (Terrell et al., 1996; Dunham et al., 2002; 

Eastwood et al., 2003; Wang, 2006; Feng et al., 2007; Song et al., 2007; Song and Zhou, 2010). 

Some of the studies include combinations of these models and geographic information systems 

(GIS) to construct fish habitat maps (Riou et al. ,  2001; Stoner et al. ,  2001). 

Although general linear regression models, general linear additive models, multiple linear 

regression models, regression tree models and logistic regression models have their advantages, 

they also have some disadvantages (Song and Zhou, 2010). These models include some 

assumptions that, in most cases, are not satisfied in a study. Specifically, these models include the 

assumptions that: (1) all variables included in the model have equal influence in defining habitat 

quality; (2) all variables included in the model are independent, i.e., there are no interactions 

among them; (3) the integrated influence of the variables to the organism can be combined in a 

simple mathematical relationship; and (4) all significant variables influencing the distribution of 

the species have been included in the model (Eastwood and Meaden, 2004). Brown et al. (2000) 

solved the first problem with the HSI model by changing the weighted coefficients of the variables 

in the model in accordance with the importance of their influence to the organism. However, 

decisions as to what weighted coefficients should be used are made by individual scientists, and 

are based primarily on their judgments. Most biologists (e.g., Feng et al., 2007) employed 

geometric means in their calculations of HSI. William and Maughan (1985) suggested that the 

geometric mean might not simulate the integrated relationship well between an organism and each 

environmental variable. Quantile regression has all the advantages of ordinary least-squares 

regression, and an additional advantage of being distribution-free. It can be used to estimate the 

effects of limiting factors, and thus provide a good means to evaluate how a species may respond 

to changes in its environmental variables (Eastwood and Meaden, 2004). When the errors are not 

normally distributed and only part of the limiting factors is measured, it can yield several 

estimation results in different quantiles, and may more accurately reflect the responses of a species 

to habitat variables, particularly for the regression models of the upper quantile (Cade and Noon, 

2003; Wu and Ma, 2006). 

In this study, an Integrated Habitat Indices (IHI) model was developed for yellowfin tuna 

(Thunnus albacares) in the Indian Ocean based on the data collected by Huayuanyu No. 18 
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(HYY18) in a survey conducted in 2005. The IHI models were constructed using the quantile 

regression method with the consideration of interactions among environmental variables. The IHI 

models were then used to evaluate responses of yellowfin tuna to environmental variability and to 

predict their spatial distributions. The models were validated with the environment variables and 

fishery data collected by Huayuanyu No. 19 (HYY19). The objectives of this study are to (1) select 

an upper-quantile model identifying key environmental variables with respect to tuna distribution; 

(2) define key habitat variables, given the environmental data available for this study; and (3) 

develop forcasting capacity for yellowfin tuna spatial distribution based on the key habitat 

variables. 

 

2. Materials and methods 

2.1 Materials 

2.1.1 Survey vessels 

Data were collected from operations on two longliners, HYY18 and HYY19, in 2005. Two 

vessels’ specifications are same. They were equipped with super spool and chill sea water 

equipment. Two vessels’ length over all, mould breadth, mould depth, gross tonnage, net tonnage 

and main engine power is 26.12 m, 6.05 m, 2.70 m, 150.00 t, 45.00 t and 407.00 kW, respectively. 

2.1.2 Survey duration and area 

The vessels fished for 54 days between September 15 and December 12 in 2005. Fishing took 

place mainly between about 1°N and 10°N and between about 62°E and 70°E (Fig. 1). The data 

collected locations were shown in Fig.1. During the two surveys, the fishing vessels targeted 

bigeye tuna (Thunnus obesus), and the bycatch included yellowfin tuna, swordfish (Xiphias 

gladius), albacore (Thunnus alalunga) and billfishes (Istiophoridae). 

 

Fig. 1 Huayuanyu 18 and Huayuanyu 19 measured positions in 2005 

(○Huayuanyu 18；△ Huayuanyu 19) 
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2.2 Data processing  

The catch rate of yellowfin tuna for station i, CPUEi, was clculated as follows: 

1000i
i

i

U
CPUE

f
                                               (1) 

where i denotes station, Ui is the number of yellowfin tuna hooked at station i, fi is the number 

of hooks deployed at station i, and i=1,2,3, ..., 48. 

The data for the yellowfin tuna caught were grouped into depth strata. For the survey of 2005, 

the data were assigned to seven depth strata of 40 m each (80-120 m, 80-120 m, … 320-360 m).  

The catch rate, CPUEij, of HYY18 at sampling station i in depth stratum j was calculated by: 

1000
ij

ij

ij
H

N
CPUE                                         (2) 

where Hij is the number of hooks deployed by HYY18 at station i in depth stratum j, and Nij is the 

number of yellowfin tuna caught by HYY18 at station i in depth stratum j. Nij was calculated as: 

i

j

ij N
N

N
N                                                     (3) 

where Nj is the number of yellowfin tuna caught by HYY18 and HYY19 in depth stratum j during 

the survey, following Song et al. (2008; 2009), N is the number of yellowfin tuna caught by 

HYY18 and HYY19 during the survey. In 2005, the data on depth of capture were collected for 299 

of the 516 yellowfin tuna (56.8%). Ni is the number of yellowfin tuna caught by HYY18 at 

sampling station i, and i = 1, 2, 3, . . ., 48.  

The catch rate of yellowfin tuna in depth stratum j, CPUEj, was clculated as follows: 

1000
j

j

j

N
CPUE

f
                                               (4) 

where j denotes stratum, fj is the number of hooks deployed at stratum j, and j=1,2,3, ..., 7. 

The weighted average value of environment variables based on the catch rate of different 

depth stratum at sampling station i was calculated, following Song et al. (2007) ,and Song and 

Zhou (2010), as: 

/i j ij jENV CPUE ENV CPUE                                   (5) 

where ENVi was the weighted average environmental variable of whole water bin, the 

environmental variable includes temperature (Ti), salinity (Si), chlorophyll-a concentration (Chi), 

dissolved oxygen concentration (DOi), horizontal current (HCi), and vertical current (WCi) at 

sampling station i from HYY 18, and ENVij was the value of the above environmental variables at 
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sampling station i in depth stratum j (i.e., 80～120 m, 120～160 m, . . ., 320～360 m). Tij, Sij, 

Chij, and DOij were the arithmetic means measured with the XR- 620 at sampling station i in 

depth stratum j. HCij and WCij were the arithmetic means measured with the Aquadopp-2000 at 

sampling station i in depth stratum j. 

The shear of horizontal current component (denoted as  ) was estimated by integrating the 

original data measured with the Aquadopp-2000 from the near-surface to the largest predicted 

hook depth (z) at each sampling station i (Bigelow et al., 2006). The coefficient   
was used to 

study the potential CPUE of sampling station i. 
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where


 was the shear of horizontal current component, vn was the Nouth-South component of 

current in the n depth stratum, un was the East-Weat component of current in the n depth stratum, 

zn was the depth of n depth stratum.
 

Thermocline intensity (TIi) (°C m
-1

) was calculated by temperature profile measured by 

XR-620 at station i as:  

u b
i

b u

T T
TI

D D





                                            (7) 

where uT , bT , uD , and bD was thermocline’s upper temperature (°C), bottom 

temperature (°C), upper depth (m) and bottom depth (m). 

2.3 Developing quantile regression models 

In this study, the prediction model was developed based on the data measured by HYY 18 at 

the 30 sampling stations. The following six variables were considered as the independent 

variables in the quantile regression models: temperature (Tij), salinity (Sij), chlorophyll-a 

concentration (Chij), dissolved oxygen concentration (DOij), horizontal current (HCij), and 

vertical current (WCij). Fifteen interaction terms of these six variables were also considered.  

The full regression model for describing the relationship between the expected catch rate at 

sampling station i in depth stratum j , 
ijCPUE



versus Tij , Sij , Chij , DOij , HCij, WCij , and the 

interaction terms can be written as: 

ij j j ij j ij j ij j ij j ij j ij j ij j ij j ij j ij j ijCPUE C a T b S c Ch d DO e HC f WC g TS h TCh i TDO j THC k TWC


                   
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j ij j ij j ij j ij j ij j ij j ijl SCh m SDO n SHC o SWC p ChDO q ChHC r ChWC        

j ij j ij j ij ijs DOHC t DOWC u HCWC                            (8) 

where Cj is the constant, TSij is the interaction of temperature and salinity, TChij is the 

interaction of temperature and chlorophyll-a concentration, . . ., HCWC ij is the interaction of 

horizontal current and vertical current, and εij is the error term at sampling station i in depth 

stratum j. The values of aj, bj, cj, dj, ej, fj . . . and uj are their corresponding parameters. 

The full regression model for describing the relationship between the expected catch rate at 

sampling station i, iCPUE


 versus weighted average Ti , Si , Chi , DOi , i , WCi, TIi and the 

interaction terms can be written as: 

ˆ

w y

i j j i j i j i j i j i j i j i j i j i j i j i

j i j i j i j i j i j i j i j i j i j i

j i j i j i j

CPUE C a T b S c Ch d DO e f WC g TI h TS i TCh j TDO k T

l TWC m TTI n SCh o SDO p S q SWC r STI s ChDO t Ch u ChWC

v ChTI DO x DOWC DOT

 

 



                      

                   

      z y                     (9)i j i j i j i iI WC xx TI x WCTI        

where jC   is the constant, TSi is the interaction of temperature and salinity, , . . . WCTIi is the 

interaction of vertical current and thermocline intensity; i   is the error term of expected catch 

rate at sampling station i. The ja  , jb  , jc  , jd  , je  , jf   … … jxy are their corresponding 

parameters. 

It is more appropriate to select θ values between 0.50 and 0.95 to build the upper-quantile 

model (Feng et al., 2007). For the quantile regression, all variables were initially included in the 

model. The statistical significance of each variable in the model was then evaluated by the 

rank-score test (Cade and Richards, 2001). If the significance value, P, was greater than 0.05, the 

variable was excluded from the model. The P-values for all variables and their interaction terms 

included in the model were re-evaluated whenever a variable was excluded. This process was 

repeated until the P-values of all the independent variables and their interaction terms in the model 

were less than or equal to 0.05, then obtained the optimal model. In this study, we used the 

statistical software Blossom to process the data, which was developed by Midcontinent Ecological 

Science Center (U.S.Geological Survey). 

2.4  Developing IHIij models in specific stratum  

Based on the regression (Eq. 8), ijCPUE


was estimated at sampling station i in depth stratum 

j . ijIHI was calculated by the following equation: 

max

ij

ij

CPUE
IHI

CPUE




                                             (10) 
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where 
maxCPUE



is the maximum value among all 
ijCPUE



 at sampling station i in depth 

stratum j and iCPUE


at sampling station i. 

2.5  Developing IHI  model 

Based on the estimated model (Eq. 9), iCPUE


 at sampling station i was estimated. IHI  

was derived from ijCPUE


and iCPUE


using the following equation: 

max

iCPUE
IHI

CPUE




                                              (11) 

2.6  Developing 
jIHI  model 

Based on the 
ijCPUE



 at sampling station i in depth stratum j , 
jIHI  was derived from 

ijCPUE


 using the following equation: 

48

1

1

48
j ij

i

IHI CPUE




                                          (12) 

2.7  The expression of IHI isolines 

Based on the estimates derived above, the IHI isoline distributions were developed using the 

software Sufer 6.0 (Golden Software, 1996). 

2.8  The predictive power of the IHI model 

The paired two-sample t-test (Tang and Feng, 2002) was used to calculate the Poisson 

correlation coefficients between predicted IHIij and observed CPUEij and between predicted IHIj 

and observed CPUEj. The Poisson correlation coefficients were assumed to indicate the predictive 

power of the IHI models. The predictive power of the IHI models were qualitatively analyzed by 

plotting the map of predicted IHIj and observed CPUEj. Because HYY 19 just mesured the 

temperature and salinity data in the survey, and the predictive model about 80-120 m depth 

stratum included the variables of temperature and salinity, the measured environmental data from 

HYY 19 could be applied to predicte IHI in the depth stratum of 80-120 m. The predictive power 

of the model was qualitatively analyzed by mapping the distribution of predicted IHI isoline and 

the nominal CPUE of yellowfin tuna in the depth stratum of 80-120 m. 
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2.9  Validation of the IHI  model 

The IHI  model was validated by applying to the survey data from HYY 19 (operation 

duration and area were Sep.～Dec. 2005 and 0ºN～8ºN, 61ºE～71ºE, respectively). The nominal 

CPUE from HYY 19 and the IHI  isoline from HYY 18 at all stations were mapped and 

qualitatively analysed the accuracy of the IHI  model. 

 

3.  Results 

3.1  Catch rate, 
ijCPUE



 

The estimated parameters of the predictive models of the catch rate, ijCPUE


, at sampling 

station i , depth stratum j were summarized in Table 1. The predictive models of the catch rate, 

ijCPUE


, were developed with a different value of quantile (θ). The value of quantile (θ) was 

from 0.75 to 0.90 for various depth strata. The key environmental parameters to construct the 

ijCPUE


 models for various depth strata were different from depth strata (Table 1).  

3.2  The catch rate, 
iCPUE



 

The optimal model of the catch rate, 
iCPUE



 at sampling station i was developed. When θ 

was 0.95, the optimal model was derived as: 

ˆ -220.81 13.56 219.98 -13.25   i i i iCPUE T DO TDO     (θ=0.95)        (10) 

The Poisson correlation coefficients between predicted and observed value was 0.67 (Table 

2). Weighted average Ti, DOi , and the interaction term TDOi were identified as key variables (Eq. 

10).  

3.3  The predictive power of the IHIij model 

The Poisson correlation coefficients and predictive power between the predicted IHIij and 

observed CPUEij are shown in Table 2. When the Poisson correlation coefficient was ＜0.400, 

0.400–0.499, 0.500–0.699, and ≥ 0.700, the predictive powers of the IHIij model were defined as 

inferior, medium, good, and excellent, respectively (Song and Zhou, 2010). The trend lines of IHIj 

was calculated and compared with those of the catch rates CPUEj in the specific depth stratum 

(Fig.2). The IHI isolines distribution was shown in Fig.3. 

In Fig.2, the IHIj and CPUEj in the corresponding depth stratum had almost similar trend, but 

there were a little differences for the depth strata of 160～200 m and 240～280 m. The IHI isoline 
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distributions in specific depth strata at different stations were shown in Fig.3. The highest and 

relative higher IHI area were shown in Table 3. The area of higher IHI in depth stratum 80～120 

m (Fig.3a) were more similar to that of 120～160 m depth stratum (Fig.3b). For the depth stratum 

160～200 m (Fig.3c), the IHI was much less than that of the previous two depth strata, and the 

Table 1 Estimation parameters of optimal predicting equation 

Depth stratum(m) 80-120 120-160 160-200 200-240 240-280 280-320 320-360 

Quantileθ 0.90 0.85 0.75 0.85 0.90 0.80 0.85 

Cj （constant） 256.73 -4226.95 -8333.64 -52.03 -491.38 5.02 139.22 

aj(Tij) -10.19 -27.20 -12.92 0 36.60 0 -11.61 

bj (Sij) 0 132.89 240.67 0 0 0 0 

cj (Chij) 0 0 0 1549.15 14501.80 0 0 

dj (DOij) 0 0 8.80 0 0 0 0 

ej(HCij) 0 0 0 0 0 -5.20 -214.08 

fj (WCij) 0 5646.19 0 0 0 206.03 0 

gj (TSij) 0 0 0 0 0 0 0 

hj (TChij) 0 0 0 0 -1082.29 0 0 

ij (TDOij) 0 0 0 0 0 0 0 

jj (THCij) 0 0 0 0 0 0 17.76 

kj (TWCij) 0 -319.79 0 0 0 0 0 

lj (SChij) 0 0 0 0 0 0 0 

mj (SDOij) 0 0 0 0 0 0 0 

nj (SHCij) 0 0 0 0 0 0 0 

oj (SWCij) 0 0 0 0 0 0 0 

pj(ChDOij) 0 0 0 0 0 0 0 

qj (ChHCij) 0 0 0 0 0 0 0 

rj (ChWCij) 0 0 0 0 0 0 0 

sj (DOHCij) 0 0 0 0 0 0 0 

tj (DOWCij) 0 0 0 0 0 0 0 

uj (HCWCij) 0 0 0 0 0 -434.82 0 

highest IHI was only 0.31. For the depth stratum 200～240 m (Fig.3d), the IHI was less than that 
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of the depth stratum 160～200 m, and the highest IHI was only 0.13. For the depth stratum 240～

280 m (Fig.3e), the IHI was less too, the highest IHI was only 0.13. For the depth stratum 280～

320 m (Fig.3f), the highest IHI was only 0.07. For the depth stratum 320～360 m (Fig.3g), the 

highest IHI was only 0.09. For the whole water bin at all stations (Fig.4), the distribution was 

almost similar to that of the depth strata 80～120 m and 120～160 m. From the above analysis, 

the IHI distribution in depth stratum 80～120 m was more similar to that of 120～160 m depth 

stratum. Their IHI distributions represented the IHI distribution of whole water bin. The IHI from 

160 to 360 m depth strata were all less, and became much less with the depth deepening. The 

validation result of the predicted model of the depth stratum 80-120 m was shown in Fig.4. In 

Fig.4, the high catch rate distributed in the area of the high IHI. The distribution of IHI which was 

predicted by using the measured environmental data was similar to the oberserved catch rate 

distribution. 

Table 2  The Poisson correlation coefficients between predicting IHI  

and the observed CPUE and the predictive power. 

Depth stratum(m) Poisson correlation coefficients Predictive power 

80-120 0.52 good 

120-160 0.68 good 

160-200 0.70 excellent 

200-240 0.43 medium 

240-280 0.72 excellent 

280-320 0.53 good 

320－360 0.59 good 

Arithmetic average of all depth strata 0.60 good 

The whole water bin 0.67 good 
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Fig. 2  The IHIj and the CPUEj of yellowfin tuna in respective depth stratum 

 

3.4  Validation of the IHI model 

Applying the longline fishery data from HYY 19 in 2005 to validate the IHI  model, in the 

area of 1ºN～9ºN,61ºE～71ºE, the validation result of the IHI  model for the water bin was 

shown in Fig.5. The higher catch rate was mainly in the area of 4°N～9°N, 62°E～63°30′E, 

2°30′N～6°N, 64°30′E～67°30′E, and which distributed in the higher IHI area. There was no 

significant difference between the distribution of catch rate and IHI in the other areas. 
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(g)  320～360m                             
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Fig. 3  The ijIHI distribution in respective depth strata (a：80～120m；b：120～160m； 

c：160～200m；d：200～240m；e：240～280m；f：280～320m；g：320～360m 
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Fig. 4  The catch rates of yellowfin tuna in depth stratum 80-120m 

from Huayuanyu 19 and theisolines of yellowfin tuna’s IHIi 

predicted using the field measured environmental data of Huayuanyu 19. 

Table 3  The area boundary with the relatively greater IHI and the value of IHI 

Depth stratum (m) Area Relative higher value 

80-120 

4°N～9°N, 62°E～64°E; 

3°30′N～6°N, 64°E～70°30′E 

0.50-0.69 

120-160 

3°N～9°N, 62°E～63°30′E; 

4°30′N～7°30′N, 66°E～69°30′E 

0.50-0.70 

160-200 4°N～6°N, 63°30′E～66°E 0.20-0.31 
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Fig.5  The catch rates of yellowfin tuna from Huayuanyu 19 and the isolines 

 of the yellowfin tuna’s IHI  predicted by using  

the field measured environmental data of Huayuanyu 18 

 

 

4.  Discussion 

4.1  Why were the predictive powers of some models less than those of others? 

The predicted power at the depth stratum of 200～240 m was medium and the Poisson 

correlation coefficient was the least at this depth stratum (0.43) (Table 2). The reasons why the 

200-240 4°N～8°N, 63°E～69°E 0.10-0.13 

240-280 4°N～6°N, 63°E～67°E 0.10-0.13 

280-320 4°N～9°N, 61°E～68°30′E 0.05-0.10 

320－360 4°N～9°N, 62°E～66°30′E 0.03-0.09 

The whole water bin 

4°N～9°N, 62°E～63°30′E; 

2°30′N～6°N, 64°30′E～67°30′E 

0.35-0.72 
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predicted power at this depth stratum was medium may result from the great sampling bias (samall 

sample) at the depth stratum of 200～240 m, lack of considering some important habitat variables 

limiting the distribution of yellowfin tuna. Consequently, it should enlarge the sampling and 

measure more environmental data to improve the predicting power of the model. 

4.2  The predictive power of the IHI model 

In general, the predictive power of the IHI model was good. The trends of the IHIj were 

similar to those of the CPUEj of yellowfin tuna at the respective depth strata (Fig.2). The IHI and 

catch rate was relatively high at the depth strata of 80～120 and 120～160 m, which indicated that 

the optimal inhabiting depth of yellowfin tuna was from 80 to 160 m. Mohri and Nishida (2000) 

suggested that the optimal depth range of yellowfin tuna was from 80 to 120 m. Song et al. (2008) 

suggested that the depth stratum of 100.0～179.9 m was the frequently swimming depth range for 

yellowfin tuna and the optimal swimming depth stratum was 120.0～139.9 m. The results of 

Mohri and Nishida (2000) and Song et al. (2008) were almost consistent with the result of this 

study. 

4.3  The effectiveness of IHIij predictive models  

In general, the IHIij predictive models were effective, which showed the spatial distribution 

of yellowfin tuna. The IHI value of yellowfin tuna was higher in depth strata of 80～120 m and 

120～160 m, and the distribution area of high value was consistent with each other (Fig.3). In the 

other five depth strata, the IHI value was lower, and there were some differences among the 

distribution of IHI. The reasons were as follows. The distributions of yellowfin tuna at different 

depth strata were different. The factors to effect the distribution of yellowfin tuna at different 

depth strata were also different (Table 1). The yellowfin tuna have obvious habitat selection, and 

were easyly affected by the environmental variables, such as temperature, salinity and so on 

(Block et al., 2007). The yellowfin tuna has the apparent seasonal south-northward migration 

characteristic, and its migration path was relevant to the route of current moving (Antonio et al., 

2004). The distribution of yellowfin tuna have greatly influenced by the water temperature, 

salinity, and dissolved oxygen (Korsmeyer et al., 1997). In the different depth strata, the 

environment variables were different. Owing to the limt of HYY 19 samplying data, we could only 

apply the model of the depth stratum 80～120 m to validate the effectiveness of the IHIij 

predictive model. The high catch rate area of the depth stratum 80～120 m from HYY 19 was 
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almost consistent with the high IHIj area (Fig.4). The predictive models in the depth strata were 

effective. 

4.4  The effectiveness of IHI predictive model 

In general, the predictive power of the IHI  model was good. In the areas of 4°N～9°N, 

62°E～63°30′E, and 2°30′N～6°N, 64°30′E～67°30′E, the distribution area of higher catch rate 

from HYY 19 was almost consistent with the distribution area of higher IHI (Fig.5). So, the model 

was effective. Moreover, the distribution of IHI  was also consistent with the distribution of IHI 

at the depth stratum of 80～160 m. Therefore, the distribution of IHIj at the depth stratum of 80～

120 m or 120～160 m could be applied to roughly estimate the horizontal distribution of yellowfin 

tuna in the whole water mass. 

4.5  Key environmental parameters to influence the spatial distribution of yellowfin tuna  

The temperature and dissolved oxygen were the crucial variables to the spatial distribution of 

yellowfin tuna. For the IHI  predictive model, there was the close relationship between the 

predicted CPUE and the weighted average temperature and dissolved oxygen. Temperature was 

the main limiting factor to effct the migration of yellowfin tuna, which limited the heart’s capacity 

to export dissolved oxygen, then influenced the swimming speed of yellowfin tuna (Maury et al., 

2001). Nishida et al. (2001) found that the distribution of adult yellowfin tuna was influenced by 

the spatial and seasonal change of water temperature. Brill et al. (1999)
 
found that the temperature, 

dissolved oxygen and thermocline depth influenced the spatial distribution of yellowfin tuna, and 

the temperature and dissolved oxygen also influenced the spawning behavior of yellowfin tuna in 

the Hawaii islands waters. Schaefer (1996) oberserved the moving path of yellowfin tuna was 

influenced by the seasonal change of 18℃ sea surface temperature isoline. Block et al. (1997) 

suggested a large number of yellowfin tuna gathered into the dissolved oxygen concentration 

6.8～8.6 mg L
-1

 area by the acoustic elemetry study. We suggest that the temperature and 

dissolved oxygen data should be input into the model to standardize the yellowfin tuna CPUE. 

4.6  Outlook 

We only used the temperature, salinity, chlorophyll-a, dissolved oxygen concentration, 

horizontal current, vertical current, and the interaction terms of these six variables to develop the 

“integrated habitat index” models. These environmental variables were measured at 30 sampling 

stations. We didn’t consider the depth of thermocline, abundance of plankton, and the trophic 
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level which might influence the distribution of yellowfin tuna. We suggest that all or some of these 

environmental variables should be considered in the future study. 

 

5.  Conclusion 

The IHI  models developed in this study could reflect the habitat selection of the yellowfin 

tuna more accurately, in gernral. The predictive power of IHI models developed in this study was 

good. We suggest this method could be used to study the spatial distribution of pelagic fishe 

caught by longline fishery. The optimal inhabiting depth stratum of yellowfin tuna was 80～160 m 

in the survey area. The IHI within the area defined by 4°N～9°N, 62°E～63°30′E had the largest 

values, and the IHI in 2°30′N～6°N, 64°30′E～67°30′E had larger values, the IHI in the other 

areas had smaller values. We suggest that the temperature and dissolved oxygen data should be 

included in the CPUE standardization to estimate the relative aboundance of yellowfin tuna.   
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