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This paper develops a new method to objectively construct an area stratification for standardizing catch-
per-unit effort (CPUE) with generalized linear models (GLMSs). This algorithm incorporates the advantages
of binary recursion as used in regression trees to minimize a chosen objective function, and extends the
concept of stepwise model selection to minimize an appropriate goodness-of-fit criterion for a chosen
statistical model, such as GLM. The algorithm can adaptively search for area stratifications that achieved
better GLM fits to the CPUE data. The new algorithm, which we call ‘GLM-tree’, is applied to swordfish
CPUE data from Japanese longline vessels in the North Pacific as a case study. The GLM-tree algorithm was
conducted with the fishery CPUE data under alternative assumptions about the structural complexity of
the GLMs and alternative choices of goodness-of-fit criteria, e.g., Akaike or Bayesian information criteria.
Results show that the GLM-tree algorithm created area stratifications more effectively than area stratifi-
cation determined in an ad hoc manner, and made area stratifications with better fits to swordfish CPUE
data until a goodness-of-fit criteria achieved minimum. The algorithm produced many alternative mod-
els under different model complexity and area stratifications, which could explain the swordfish CPUE
data equally well, because the structural complexity of the GLMs can be compensated by increasing the
number of areas. Effects of area stratifications on the estimates of standardized CPUE are also shown to
indicate that estimates of the abundance indices tend to converge after a sufficient number of areas have
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been added.
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1. Introduction

To achieve sustainable management of marine fish stocks, it is
important to know how the resources have increased, decreased
or fluctuated through time in relation to the fishery exploitation
pattern. Because the absolute abundance of most fish stocks in
oceanic ecosystems cannot be observed directly, relative abun-
dance indices are often used to estimate the current status and
historical trends of such stocks (Hilborn and Walters, 1992). Rela-
tive abundance indices are typically derived from research survey
data or estimated from commercial or recreational fishery catch-
per-unit effort (CPUE) data. In general, relative abundance indices
for highly migratory tuna and billfish species, which inhabit wide
range of ocean, are usually derived from commercial fishery CPUE
(Maunder et al., 2006) with a few exceptions, e.g., Southern bluefin
tuna (Eveson et al., 1999).

Nominal fishery CPUE is influenced by annual changes of stock
abundance and other factors that change catchability (cf. Hilborn
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and Walters, 1992; Maunder and Punt, 2004; Bishop, 2006). Catcha-
bility of a highly migratory predator may vary by geographic region
due to oceanographic conditions and the associated densities of
prey. For example, consider the situation where the area of a tradi-
tional fishing ground is shrinking year by year from a wide range of
ocean, which is the main habitat of a highly migratory species, to
a narrow coastal area, which is a marginal habitat for the species.
In this case, nominal fishery CPUE may decrease year by year even
though the actual abundance of the stock has not changed. This sit-
uation can easily occur when fishing practices change, and may be
especially important for measuring the relative abundance of non-
targeted, by-catch species. The possible biases caused by changes
in the spatial distribution of fishing effort and associated catchabil-
ity need to be accounted for when estimating relative abundance
indices using fishery CPUE data (Walters, 2003; Campbell, 2004;
Ward, 2006).

Many of the impacts of spatiotemporal changes in fishing effort
on CPUE, or other factors that affect catchability besides abundance,
can be removed by applying statistical methods to standardize
CPUE. Methods to standardize CPUE are well developed and are an
important component of stock assessments (Hilborn and Walters,
1992; Maunder and Punt, 2004; Bishop, 2006). To standardize
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Fig. 1. Average nominal catch rates (numbers per 1000 hooks) of swordfish caught
by Japanese longliners from 1975 to 2007 in the North Pacific, and area stratification
defined by Nakano (1998). The fishery data in the region surrounded by thick gray
lines were used in Nakano (1998) and this study. Several high CPUE areas (>1.5)
were not included because of an insufficient time-series of fishing effort. Black solid
lines partitioning the region indicate boundaries of the area stratification by Nakano
(1998) with serial area labels from 1 to 8 in squares.

CPUE, the response variable (i.e., CPUE) is typically modeled using
explanatory variables such as fishing region and season, gear set-
tings, and year in a statistical model. Standardized abundance
indices can be derived from the estimated year effects after the
impacts of other predictors have been statistically removed to the
extent possible. Generalized linear models (GLMs) are commonly
used for standardizing CPUE (Gavaris, 1980; Kimura, 1981). Other
statistical approaches for standardizing CPUE have been devel-
oped, including generalized additive models (GAMs, cf. Bigelow
et al., 1999; Venables and Dichmont, 2004) and generalized linear
mixed models (GLMMs; cf. Rodriuez-Marin et al., 2003; Venables
and Dichmont, 2004). In this context, the definition of factor lev-
els that affect CPUE, which can be created by dividing continuous
explanatory variables into categorical ones, is an important step
for applying statistical models such as GLMs, GAMs or GLMMs to
standardize CPUE (Bishop, 2006).

Spatial stratification of the fishing area into spatial strata is par-
ticularly important for standardizing CPUE. Ideally, an appropriate
spatial stratum is a region in which fish density is homogeneous
and CPUE is influenced by explanatory variables in a similar manner
(Bishop, 2006). However, many studies to standardize CPUE appear
to determine spatial strata in an ad hoc manner. That is, spatial
strata are often defined based on either the spatial distribution of
fishing effort and nominal CPUE or oceanographic conditions, with
the exception of a few studies using regression trees (i.e., Watters
and Deriso, 2000; Walsh and Kleiber, 2001). Selecting appropri-
ate area strata is especially important for standardizing CPUE of
highly migratory species such as tunas and billfishes because fish-
ery independent abundance indices are rarely available for these
species. Further, the broad geographic ranges of tuna and billfish
stocks suggest that spatial heterogeneity of catchability is likely to
be a key factor for CPUE standardization.

Swordfish (Xiphias gladius) is a large pelagic billfish found
in tropical, temperate, and subarctic waters (Nakamura, 1985).
While swordfish is a cosmopolitan species, the distribution of
swordfish CPUE caught by Japanese longliners in the North Pacific
exhibits substantial spatial heterogeneity. The highest swordfish
CPUE occurs in the northwest Pacific between 25°N and 45°N and
in coastal waters off California, while the lowest CPUE has been
observed in tropical waters (Uozumi and Uosaki, 1998; Nakano,
1998; Fig. 1). Nakano (1998) defined a total of eight oceanic strata
for standardizing CPUE of swordfish in the North Pacific based
on the heterogeneity of the distribution of average nominal CPUE
(Fig. 1). Nakano found that there was a significant interaction
between year and area effects when standardizing swordfish CPUE
with a GLM. This implied that swordfish abundance trends dif-
fered among the 8 areas. Kleiber and Bartoo (1998) also found

significant differences between swordfish abundance trends in the
northwest Pacific (west of the International Date Line) and the
north-central Pacific (International Date Line to 130°W, equator
to 20°N). While both of these studies found that spatial hetero-
geneity was a predominant feature of the abundance trends of the
swordfish population in the North Pacific, their results were derived
from different assumptions about the appropriate spatial strati-
fication used for standardizing CPUE. In particular, both studies
selected a single spatial stratification a priori, and did not consider
other possible scenarios of area stratification. Consequently, it was
not possible to evaluate whether their choices of area strata were
appropriate and sufficient to standardize swordfish CPUE.

This study develops a new method to objectively construct an
area stratification for standardizing CPUE with GLM. This algorithm
adaptively searches for the area stratification that produces the best
GLM fit to the CPUE data. We apply the new algorithm to swordfish
CPUE data from Japanese longline vessels in the North Pacific as
a case study. The case study illustrates the relative effectiveness
of the algorithm and shows how alternative assumptions about
the structural complexity of the GLMs and alternative choices of
goodness-of-fit criteria can affect the results of CPUE standardiza-
tion. Empirical relationships among the number of areas, model
complexity, and goodness-of-fit criteria are investigated to deter-
mine their relative influence on estimates of standardized CPUE.

2. Methods
2.1. Algorithm for area partitioning

To construct an area stratification that provided the best fit to the
observed CPUE data, we used a binary recursive partitioning algo-
rithm similar to what is used to construct regression trees (Breiman
etal., 1984).Regression trees have been applied to select area strata
for standardizing CPUE of bigeye tuna (Watters and Deriso, 2000)
and blue sharks (Walsh and Kleiber, 2001). In these analyses, the
objective function to be minimized was the total sum of squared dif-
ferences between average and observed CPUE over strata created by
the regression tree algorithm (Breiman et al., 1984). However, the
objective function to be minimized in this study was a goodness-
of-fit measure for the fit of the statistical model, such as a GLM, that
was used to standardize CPUE.

The area-partitioning algorithm, which we call ‘GLM-tree’, was
applied to partition the fishery area using the following three steps.
First, the algorithm divided the current spatial domain into all pos-
sible pairs of strata, assuming a fixed spatial resolution defined by
a set of regularly spaced dividing lines. This was the binary parti-
tion step. Second, the chosen statistical model was applied to fit
the fishery CPUE data under each of the possible stratifications.
This was the model fitting step. Third, a goodness-of-fit criterion
measuring the fit of the statistical model to the observed CPUE
data was used to select the stratification that produced the best
fit over the set of possible stratifications. This was the optimization
step for the current spatial domain. This three-step procedure was
repeated recursively until the goodness-of-fit criterion could not
be improved by an increase in the number of areas.

To illustrate the GLM-tree algorithm, consider a hypothetical
case where the fishery area is the rectangular region extending
horizontally from 140°E to 160°E and extending vertically from
10°N to 20°N in the North Pacific with a spatial resolution of
5° x 5° (Fig. 2). This spatial domain can be denoted as the rectangle
R[140:160, 10:20] where the first coordinate indicates longitudinal
extentand the second coordinate indicates latitudinal extent. In the
first step of the GLM-tree algorithm, there are four possible pairs
of strata that can be created by adding one new boundary with a 5°
mesh; these are: (I) R[140:145, 10:20] and R[145:160, 10:20], (II)
R[140:150, 10:20] and R[150:160, 10:20], (III) R[140:155, 10:20]
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Fig. 2. Schematic diagram to show how the GLM-tree algorithm recursively constructs an area stratification for a given spatial domain. The notation R[140:160, 10:20]

represents the rectangular region that extends from 140°E to 160°E and from 10°N

and R[155:160, 10:20], and (IV) R[140:160, 10:15] and R[140:160,
15:20].Inthe second step, a GLM that includes the variable area was
applied to standardize the CPUE data in the spatial domain using
the four possible area stratifications. In the third step, a goodness-
of-fit measure, e.g., Bayesian Information Criterion (BIC; Schwarz,
1978), was applied to select the stratification that produced the
best fit to the CPUE data. For example, if the BIC values for the four
stratifications of (I), (II), (III) and (IV), respectively, were 15, 13, 19
and 20, and the BIC value without area stratification was 23, then
stratification (II) with BIC=13 would be selected as the optimal
stratification. In the next recursion, the stratification (II) would be
partitioned using same three steps to construct a set of four possi-
ble stratifications, each consisting of 3 areas. Of these stratifications,
the one with minimum BIC for the fitted GLM (e.g., BIC=9 in Fig. 2)
would be selected for the next step of the algorithm.

The GLM-tree algorithm requires a goodness-of-fit criterion to
measure how well the statistical model can explain the observed
CPUE. In this study, Akaike’s Information Criteria (AIC; Akaike,
1973) and BIC were used as the goodness-of-fit criteria to be mini-
mized. The AIC is calculated from model deviance (D) evaluated at
the maximum likelihood estimate and a parameter penalty which
depends on the number of model parameters (p) (Eq. (1)):

AIC=D+2p (1)

For BIC, the parameter penalty increases with both the number
of parameters and the sample size (n) of data points used to fit the
model (Eq. (2)):

BIC = D + log(n)p (2)

Because these two goodness-of-fit criteria are based on different
underlying concepts of consistency (Burnham and Anderson, 2002),
this study compared the performance of both AIC and BIC for cre-
ating area stratifications to standardize CPUE.

to 20°N.

Another important difference between the GLM-tree and the
regression tree algorithms was the recursive procedure to create
partitions. For the regression tree algorithm, the recursive proce-
dure was applied to each regional subgroup in order to ‘grow’ the
tree for each subgroup independently. In contrast, for the GLM-tree
algorithm, the recursive procedure was applied to all subgroups to
simultaneously select a single boundary from the set of candidate
stratifications produced by adding one boundary. By definition, the
objective function for the regression tree algorithm was the total
sum of squares: this function can be minimized by separately mini-
mizing its individual components calculated for each subgroup. On
the other hand, the objective function for the GLM-tree algorithm
was a model-based goodness-of-fit criterion that cannot be sepa-
rately calculated for each sub-group by definition. As a result, an
increase in the number of areas within a subgroup can influence
both the estimated model parameters and the goodness-of-fit of

the model to the fishery data in the GLM-tree algorithm.

In summary, the GLM-tree algorithm was designed to increase
the number of areas one at a time from the set of all candidate par-
titions. Computer code to implement the GLM-tree algorithm was
written in the R language (R Development Core Team, 2008), and
is available from the lead author by request. Estimation of model
parameters for the GLMs was carried out using the biglm module

(Lumley, 2006).

2.2. Case study: Japanese longline CPUE of swordfish in the North

Pacific

The GLM-tree algorithm was applied to Japanese longline CPUE
of swordfish in the North Pacific as a case study. Swordfish CPUE
indices have typically been derived from analyses conducted by the
Billfish Working Group of the International Scientific Committee
for Tuna and Tuna-like Species in the North Pacific Ocean. In one
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of these analyses, Nakano (1998) subjectively defined eight area
strata for swordfish CPUE standardization (Fig. 1) based on visual
inspection of the spatial distribution of average nominal CPUE of
swordfish and fishing effort. In this study, we used the same overall
spatial domain as Nakano (1998).

The data sets used in this study were also similar with those used
in Nakano (1998), but the fishery data were updated until 2007,
and sorted out to eliminate outliers. The fishery catch and effort
data were collected from Japanese longline vessels and compiled
by National Research Institute of Far Seas Fisheries (NRIFSF), Fish-
eries Agency of Japan. These data included species-specific catches
of tunas, billfishes, and other bycatch species such as sharks, as
well as details of fishing operations (e.g., number of hooks, gear
configurations, and locations). Although Japanese longline data are
reported by fishing captains in logbooks by each operation, NRIFSF
typically aggregates the catch and effort data by 5° x 5° area, month
and hooks per basket (HPB) in order to average-out the influence
of highly variable logbook reports and to keep the size of data sets
manageable. As a result, both this study and Nakano (1998) used the
aggregated longline data. The time period was from 1975 to 2007 in
this study. Each aggregated area-month-HPB cell was required to
have at least 10 fishing operations in order to provide a represen-
tative sample. Therefore, the cells with fewer than 10 operations
were excluded from the analyses in this study although Nakano
(1998) used all data.

Alisting of the number of longline operations used in this study,
by region, HPB category and year, is given in Table 1. Shallow long-
line sets consisting of 3-4 HPB occurred in the northwest region
of the North Pacific (areas 1, 2 and 4-6) during the entire time
period of 1975-2007, while shallow sets were rarely observed
in the northeast (areas 3 and 7) or subtropical (area 8) regions.
Moderate-depth longline sets consisting of 5-9 HPB during the
1970s and early 1980s were generally replaced by deeper sets con-
sisting of >9 HPB after the late 1980s in all regions. This historical
shift in the depth of fishing effort occurred worldwide (cf. Yokawa
and Uozumi, 2001) due to a shift of targeting to bigeye tuna in
tropical waters as well as other changes in the evolution of gear
configurations used by Japanese longliners (Yokawa and Uozumi,
2001; Ward and Hindmarsh, 2007). Because the effects of year and
HPB were confounded by area, GLMs that included both interaction
terms of year and area, and year and HPB were not considered in the
same model when applying stepwise model selection for choosing
the form of the GLM for standardizing CPUE.

Standardization of swordfish CPUE (CPUE,;, where catch had
units of number of swordfish per 1000 hooks, “y” indexed year, “i"
indexed gear configuration, “j” indexed quarter, and “k” indexed
area) was carried out using GLMs with a lognormal error distri-
bution. Explanatory variables for the GLMs included year (Y), gear
configuration of HPB (G), quarter (Q) and area (A) along with some
interaction terms (Eq. (3)):

log <CPUEyijk + ) =Yy + G; + Q; + Ay + (interaction terms) (3)

3
10
A constant term /10 was added to the observed CPUE,;j in order
to rescale the value of zero catches (Campbell et al., 1996), where
the value of 1 was the overall average of nominal swordfish CPUE
throughout the time series (u =0.78). Although this approach for
treating zero catch data may lead to biased predictions of CPUE in
some circumstances (cf. Maunder and Punt, 2004), it did not have
an important influence in this study because the percentages of
zero catches were relatively low in the swordfish data sets (over-
all average of 8% zero catches with an average of 2-16% by area).
CPUE predictors other than area were categorized a priori. The
effect of gear configurations (G) was categorized into five classes
of 3-4, 5-6, 7-9, 10-14 and 15-20 HPB. These categories were
determined from GAM analyses using gam packages in R (Hastie,

2008) to investigate the nonlinear relationship between HPB and
CPUE. The seasonal effect on CPUE (Q) was also categorized into four
quarters: January-March (1st quarter), April-June (2nd quarter),
July-September (3rd quarter) and October-December (4th quar-
ter).

Potential interaction terms to be included in the GLMs were
selected in a preliminary stepwise analysis using the area stratifica-
tion from Nakano (1998). In this stepwise model selection analysis,
BIC was used to eliminate 2nd order interaction terms one by one
from the most complex model including all 2-order interaction
terms except for both year and area (Y*A) or gear and area (G*A) due
to confounding effects described above. Model selection was also
evaluated using AIC for comparison, although those results were
not emphasized because AIC tended to select the most complex
model due to the large number of CPUE observations (Shono, 2005).

For GLMs that included the interaction term of Y*A, the abun-
dance index in year y (SCPUEy) was calculated from the area
weighting factors for each area indexed by a (fs, a=1,2,...,A) and
from the abundance indices in year y and area a (SCPUE,,) using
the following equation (Campbell, 2004):

A
SCPUE, = Zfa -SCPUE,q, where Zfa -1 (4)
a

a=1

The parameter SCPUE,; was estimated from the least squares mean
(a.k.a., population marginal mean) of CPUE in yeary in area a (Searle
et al,, 1980) in the nominal scale and the area weighting factor
(fa)- The factor was defined as the ratio of the number of 5° x 5°
blocks in area a to the total number of 5° x 5° blocks considered.
SCPUE, was also estimated for models without the Y*A term as the
least squares mean in year y. The least squares means were origi-
nally estimated in the logarithmic scale, and converted to SCPUEy, or
SCPUEy, in the nominal scale by exponentiating the estimated least
squares mean and adding the constant term. For example, SCPUE,
is calculated with exp(LCPUE, + aj /2) — /10, where the param-
eter LCPUE, was least squares means in year y in the logarithmic
scale and oy was the standard deviation of the estimated LCPUE,.
The value of SCPUE, or SCPUEy, was not evaluated when the corre-
sponding least squares mean could not be calculated due to missing
data. Least squares means were calculated using SAS (ver. 9.1 for
SunOS 5.9 platform).

Swordfish abundance indices were also calculated from stan-
dardized CPUE using the area stratification from Nakano (1998).
However, unlike Nakano (1998), which did not exclude strata hav-
ing fewer than 10 operations, the least square means for the year
effect could not be calculated for the model including the Q*A term
due to missing effort in the Area 3 and third quarter cell. In this case,
the abundance indices were approximated by assuming the coef-
ficients in those strata with missing data was the average of the
other coefficients in the interaction term. The resulting approxi-
mate index was found to differ from the original index by less than
1 percent across years.

In order to assess the robustness of the calculated area strat-
ifications, the GLM-tree algorithm was applied to 50 bootstrap
data sets, which were constructed from the original CPUE data set
by randomly re-sampling CPUE observations with replacement. In
particular, the bootstrap re-sampling of observed CPUE was con-
ducted for each year, quarter and HPB cell.

3. Results

Step-wise model selection using BIC and the area stratification
defined by Nakano (1998; Fig. 1) selected the interaction terms of
A*Q, Q*G and A*G (Model IlI-A) when starting from the full model
excluding Y*A (Table 2). Similarly the interactions of A*Q, Q*G and
Y*A were selected (Model IlI-B) when starting from the full model



Table 1
Number of longline operations recorded in the data used for the swordfish CPUE standardization by year, region and gear configuration of hooks per basket (HPB). The region numbers follow the definition used in Nakano (1998,
Fig. 1). Data for which the number of operations per each aggregated area, month and HPB cell were less than 10 were excluded from this analysis and this table.

Northwest subarctic (Areas 1and 2) Northwest temperate (Areas 4 to 6) Northeast (Areas 3 and 7) Subtropical (Area 8)

HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB HPB

3-4 5-6 7-9 10-14 15-20 3-4 5-6 7-9 10-14 15-20 3-4 5-6 7-9 10-14 15-20 3-4 5-6 7-9 10-14 15-20
1975 779 4562 2097 177 0 862 2955 996 285 0 0 1338 150 0 0 527 8095 1223 1260 0
1976 858 8804 4830 719 0 791 5074 1749 835 0 0 810 111 32 0 807 8048 2201 1937 0
1977 991 7089 3686 1093 0 833 6495 3149 2123 0 0 611 677 46 0 264 7634 845 2954 12
1978 618 6962 2022 2217 0 744 5614 1931 1694 0 0 892 1559 795 0 0 6585 1796 5394 0
1979 651 7625 2464 3648 0 693 4586 1539 2381 20 0 795 1231 671 0 124 5197 861 4370 0
1980 357 6644 1993 5063 28 883 4835 1276 2586 34 0 345 384 397 0 206 3841 734 5114 0
1981 566 6751 1985 9013 0 1086 5096 1334 4646 23 0 1027 710 316 0 72 2703 817 7156 0
1982 681 5397 1739 8421 0 715 3967 896 4606 14 0 1141 730 289 0 218 1811 257 6217 0
1983 2333 4650 1966 9048 0 1682 1945 698 3801 0 0 376 1210 608 0 0 923 246 5977 15
1984 1331 4318 3700 11222 25 2405 1743 563 2673 55 0 122 1707 661 39 0 646 188 7214 19
1985 3120 3023 3412 9442 76 2624 1896 315 1862 10 0 0 713 267 0 0 239 144 5575 11
1986 5096 1901 1542 8475 328 3175 968 302 3448 172 0 0 1387 1465 13 0 282 132 8259 831
1987 4543 2009 2313 7021 297 4227 502 216 1560 328 0 0 1089 554 32 0 384 78 8459 1583
1988 4443 1399 2923 7635 466 2232 408 265 1170 283 0 11 781 992 0 0 391 95 12524 1368
1989 5641 505 3021 5990 604 2653 166 55 1868 211 0 19 2651 1584 0 0 536 154 9974 984
1990 4602 359 2513 4029 862 2498 23 289 943 304 0 0 928 879 0 0 219 0 5901 435
1991 4404 397 3053 5262 1282 2270 53 81 1091 598 0 16 1474 833 38 76 139 265 7479 2409
1992 4154 24 2656 2842 625 2858 15 283 962 526 0 31 1300 2591 0 0 13 15 3304 1842
1993 4536 29 2816 3293 1119 2995 0 342 1397 539 0 0 1093 1861 93 0 0 17 5357 2067
1994 3771 118 980 3120 1866 2277 42 90 970 587 0 0 840 2345 32 17 0 0 5140 1379
1995 3980 81 644 2285 1785 2353 14 36 697 718 0 41 721 1791 263 0 77 22 5171 2931
1996 4006 123 571 1931 925 2038 0 57 719 836 0 0 979 765 13 0 0 10 3425 1998
1997 3859 133 674 1552 1265 1625 0 95 586 1090 0 0 246 661 95 0 19 10 1899 1337
1998 3986 0 272 1150 1341 1642 0 78 442 818 0 0 468 860 110 0 0 49 1326 2640
1999 4671 0 220 1240 1688 1150 0 0 187 1465 0 0 369 1458 1707 0 0 0 1707 2898
2000 5841 0 62 394 1188 602 0 0 765 982 0 0 118 630 536 0 0 23 1411 2673
2001 5427 69 132 885 686 433 0 29 438 745 0 0 0 331 243 0 0 0 1316 3500
2002 4323 0 0 423 1053 868 0 24 490 741 0 0 0 597 952 0 0 0 853 1973
2003 4040 0 0 676 1669 371 0 0 160 740 0 0 0 557 2645 0 0 0 1249 3653
2004 3930 92 0 299 1559 503 0 0 259 424 0 0 0 122 457 0 0 0 975 2532
2005 3258 156 0 290 1606 330 0 0 280 653 0 0 0 202 2349 0 0 0 797 3028
2006 2965 183 0 359 2035 320 12 0 103 825 0 0 0 59 1175 0 0 0 657 3468
2007 2676 383 0 301 1819 314 10 0 44 645 0 0 0 145 444 0 0 0 547 2161
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ANOVA table for the model selected by BIC under the assumption with 8 area strata by Nakano (1998).

(a) The model including the effect of G*A (Model I11-A)

(b) The model including the effect of Y*A (Model I11-B)

DF Sum of square Mean square Fvalue Pr>F DF Sum of square Mean square F value Pr>F
Model 103 27578.77 267.755 487.52 <.0001 Model 296 27324.54 92.31263 164.39 <.0001
Error 29425 16160.76 0.54922 Error 29232 16414.98 0.56154
Corrected 29528 43739.52 Corrected 29528 43739.52
Total Total
R-Square=0.631, BIC=66,210 R-Square = 0.625, BIC=67,050
Effects DF Type 111 SS Mean square Fvalue Pr>F Effects DF Type Il SS Mean square Fvalue Pr
Y (year) 32 347 11 19.8 <.0001 Y(year) 32 116 4 6.4 <.0001
A (area) 7 1503 215 391.0 <.0001 A (area) 7 1390 199 353.5 <.0001
Q (quarter) 3 17 6 10.5 <.0001 Q (quarter) 3 14 5 8.4 <.0001
G (gear) 4 418 105 190.4 <.0001 G (gear) 4 5634 1409 2508.4 <.0001
A*G 25 1879 75 136.9 <.0001 Y*A 218 1625 7 13.3 <.0001
A*Q 20 1515 76 138.0 <.0001 A*Q 20 1851 93 164.8 <.0001
QG 12 253 21 384 <.0001 Q*G 12 224 19 333 <.0001

excluding A*G. Both Models III-A and I1I-B were subsequently ana-
lyzed using the GLM-tree algorithm. In addition, several simpler
models including (a) no interaction terms (Model 0), (b) the single
interaction term of A*Q (Model I) and (c) the two interaction terms
of A*Q and Q*G (Model II) were considered for comparison with the
selected models.

Comparisons of the area stratification produced by the GLM-tree
algorithm using the simplest model (Model 0) versus the most com-
plex models (Models IlI-B and I1I-A) showed that making structural
assumptions about the number of interaction terms included in the
GLM can produce different area stratifications (Fig. 3). The GLM-
tree algorithm using the three different GLM structures selected the
same boundary at 25°N in the 1st iteration (Fig. 3a). However, the
selected partition with Model 0 was different from those selected
using Models III-A and III-B in the 2nd iteration (Fig. 3b). In partic-
ular, the second boundary was selected at 210°E from 25 to 40°N
for Model O, but at 30°N for Models III-A and I1I-B.

Differences in the area stratifications produced by the alterna-
tive models increased as the number of steps increased. By the 7th
partitioning step, there were three distinct sets of 8 areas produced
by the alternative model structures (Fig. 3¢) that each differed con-
siderably from the area stratification proposed by Nakano (1998).
Further, the three area stratifications created using the GLM-tree
algorithm produced substantially better fits to the CPUE data than
the one used by Nakano (1998). In particular, BIC values for the area
stratifications using the GLM-tree algorithm were 64,148 for Model
I1I-A and 66,176 for Model I1I-B, while those derived from Nakano’s
stratification with the same data set were 66,210 for Model III-A
and 67,050 for Model III-B. The BIC differences of over 1000 units
indicated that the GLM-tree algorithm produced much more plau-
sible model fits and provided very strong evidence that the area
stratifications produced by the algorithm were significantly better
(Kass and Raftery, 1995).

As expected, the optimal number of defined areas differed for
the two goodness-of-fit criteria (Fig. 3d and e). Using the AIC cri-
teria, 67 areas were selected using the simplest model with no
interaction terms (Model 0), while 30 and 31 areas were selected
for Models I1I-A and III-B, respectively. In comparison, the number
of areas selected using the BIC criteria were much lower, being 42,
24 and 14 under Models 0, IlI-A and III-B, respectively.

The two goodness-of-fit criteria showed different patterns of
model refinement as the number of strata increased (Fig. 4). For
example, the relative trajectory of BIC values under Model III-B
(Fig. 4b) differed from the trajectory of AIC values (Fig. 4a); this
difference resulted from the parameter penalty and the large num-
ber of Y*A parameters estimated for this model (Fig. 4e). Similarly,
for both the AIC and BIC criteria, the resulting spatial structure for

Model 0 with no interactions is seen to be more complex than those
with interaction terms, indicating that the interactions account for
some of the spatial heterogeneity in the CPUE data.

Our results indicate that alternative model structures can
explain the CPUE data equally well (Fig. 4). This is because
increasing the number of areas can compensate for the structural
complexity of the GLMs. For example, AIC values of less 65,000 were
achieved by each of the Models [, II, I1I-A and III-B when assuming
more than 11, 10, 5, and 6 areas, respectively (Fig. 4a). However, as
AIC or BIC, improved with increasing number of strata, the number
of alternative models with similar goodness-of-fit values declined.
In this case study, the minimum AIC of 58,140 and minimum BIC
of 60,880 was achieved solely by Model III-B with 31 strata and
by Model IlI-A with 24 strata, respectively, among all the alterna-
tive models and stratifications examined. The structural complexity
of the best fitting model selected using AIC or BIC indicated the
importance of including interaction terms when evaluating area
stratifications, because structurally simpler models cannot explain
the CPUE data as well as more complex ones as the number of area
strata increase. In particular, the incorporation of the A*Q, and Y*A
or Y*G terms had a substantial impact on overall model fit in this
case study.

It is also noteworthy that the model fits with a total of 8 areas
produced by the GLM-tree algorithm were always better than that
using the area stratification defined by Nakano (1998) for each
model structure. For example, there was roughly a 5% difference
in the amount of explained variance (Fig. 4d) between the models
using the 8 spatial strata defined by Nakano (1998) and those using
strata created with the GLM-tree algorithm. This result suggests
that the algorithm is a robust and effective approach for creating
adaptive area stratifications under alternative modeling assump-
tions.

The historical swordfish abundance indices estimated from the
standardized CPUE exhibited roughly similar patterns across model
structures and area stratifications, with peaks of abundances occur-
ring in the mid-1970s, mid-1980s, and post-2000 (Fig. 5a), though
each index was influenced by the structural model assumptions
and the area stratification used (Fig. 5b). Indices for models with a
small number of area strata, especially those with only 2-4 areas,
tended to diverge from the indices based on models with a larger
number of areas. On the other hand, indices for models with 5 or
more areas were generally more similar, especially for Models O,
I and II. It is also noteworthy that indices based on the Nakano
stratification (which incorporated 8 areas) were more similar to
indices produced by the GLM-tree algorithm with only 2-4 areas.
Consequently, the abundance indices based on Nakano’s stratifica-
tion were different from the corresponding GLM-tree based indices
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Fig. 3. Examples of the increasing number of areas created by the boundaries (solid black lines) selected by the GLM-tree algorithm with difference assumptions regarding
model structures (Models II, [II-A and III-B). White broken lines in (c) indicate the area stratification defined by Nakano (1998). The gray shaded region, same as the region
surrounded by thick gray lines with fishing effort in Fig. 1, represents the actual spatial region to be stratified.

with the same number of areas. In addition, the GLM-tree indices
with >5 areas displayed varying degrees of differences between
models. For example, the estimated abundance indices using Model
0 were higher in the mid-1980s than those estimated using Mod-
els I and II, while the Model 0 estimates after 2000 tended to be
smaller than those using Models I and II. In some cases, models
with >5 areas were not estimable because of missing data. In par-
ticular, a convergent time trend was not observed for Model IlI-A
because least squares means could not be calculated under this
model structure with more than 6 areas. In addition, a convergent
trend for Model III-B could not observed because the amount of
CPUE data was insufficient to estimate the Y*A interactions in some
strata.

The divergence of the estimated abundance indices was found
to be especially significant in the initial steps of the GLM-tree
algorithm, particularly from the 1st to the 3rd iterations in Mod-
els 0, I and II (Fig. 6). The indices differed by around 2-4% on an
annual basis during these initial steps. During subsequent iterations
with approximately >5 areas, the estimated abundance indices
converged to similar values, with the differences in the average
abundance indices generally being less than 1%. This result sug-
gests that the estimated indices tended to converge after sufficient

number of areas have been created by the GLM-tree algorithm. On
the other hand, observed differences between successive estimates
of indices under Model IlI-B (which included the Y*A term) were
found to be larger than those for the other models, and suggests
that the indices estimated for the model with the Y*A term may
take more iterations to converge.

The optimal number of areas determined by the GLM-tree algo-
rithm was sensitive to the observed CPUE data used for model
fitting, the chosen goodness-of-fit measures and the chosen model
structure (Fig. 7). In particular, the optimal number of areas differed
by each bootstrap data set even when the same model structure
was assumed. While there was a general tendency for more com-
plex models to have a lower optimal number of areas, the optimal
number of areas also varied by goodness-of-fit criterion. For exam-
ple, under Model IlI-B, the optimal number of strata in the bootstrap
data sets ranged from 22 to 46 with an average of 35 using AIC, and
ranged from 16 to 26 with an average of 20 using BIC. This sug-
gested that the optimal number of areas produced using the BIC
criterion will be lower than the number produced using AIC.

The bootstrap analysis also showed the potential variation of the
area stratification boundaries produced by the GLM-tree algorithm
(Fig. 8). A large variety of boundaries were produced from the 50
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bootstrap data sets fitted under Models IlI-A and III-B (Fig. 8, right
panels), and the boundaries observed in the all of bootstrap repli-
cates (black thick lines in Fig. 8) were a subset of the total number of
boundaries that might have been created with the GLM-tree algo-
rithm. In particular, the total length of the boundaries selected in all
of the bootstrap replicates was approximately 1/3 of the total length
of all of the fitted boundaries (Fig. 8, left panels). While the bound-
aries selected in all of the bootstrap replicates suggest the existence
of a robust envelope of boundaries that was not sensitive to sam-
pling variation, roughly half of the boundaries selected were highly
dependent on the bootstrap realization. Interestingly, the latitudi-
nal boundaries created with the GLM-tree algorithm seemed to be
more robust than the longitudinal boundaries in this study. This
pattern likely reflects persistent latitudinal variation in the spatial
distribution of the swordfish population in the North Pacific.

4. Discussion

This study demonstrated the effectiveness of the GLM-tree algo-
rithm to create area stratifications that produce better fits to CPUE
data (Fig. 4) and also showed how different area stratifications
affected estimates of abundance indices as a function of model
complexity (Figs. 5 and 6). The trajectories of the goodness-of-fit
measures as a function of the number of areas suggested that sev-
eral alternative models can produce similar fits to the observed
CPUE data by compensating model complexity with the number of
areas assumed (Fig. 4). However, the goodness-of-fit values of the
simpler models that lacked appropriate interaction terms could not
be substantially improved by increasing the number of areas. Thus,
the GLM-tree algorithm cannot compensate for an over-simplified
model structure. This indicated that the selection of an appropri-
ate model structure was very important for obtaining a good fit
to the CPUE data. At the same time, comparing the estimates of
abundance indices produced under various assumptions about area
stratification with a sufficient number of strata (Fig. 6) suggested
that strict optimization for adaptive area stratification until AIC or

BIC minimum may not always be needed to derive robust estimates
of abundance indices, from a practical point of view.

The new computer-intensive approach presented in this study
exhibited good performance and was more effective than the pre-
vious ad hoc approach for choosing area strata for standardizing
swordfish CPUE. This was evident in the smaller goodness-of-fit
measures calculated from the model assuming 8 areas created
by the GLM-tree algorithm compared to those assuming the ad
hoc area stratification determined by Nakano (1998) (Fig. 4). In
addition, the abundance indices estimated with the ad hoc area
stratification diverged from the trends estimated by the GLM-tree
algorithm with a sufficient number of strata, and were similar to
those with a poor spatial structure based on only 2-4 areas (Fig. 5).
This indicates that Nakano’s area stratification was not adequate
to explain the spatial structure in the data. In contrast, the GLM-
tree algorithm was able to effectively identify area stratifications
in order to estimate abundance indices that were relatively robust
for further increases in the number of areas.

Regression trees have been previously applied to select
area stratifications for analyzing longline catch data for bigeye
tuna (Watters and Deriso, 2000) and blue shark (Walsh and
Kleiber, 2001). Our method incorporated the advantages of the
recursive-binary algorithm used in regression trees to automati-
cally minimize a chosen objective function for stratifying spatial
data. The method in this study also extended the concept of step-
wise model selection to minimize an appropriate goodness-of-fit
criterion for a chosen statistical model, such as GLM, to standard-
ize CPUE. In general, the GLM-tree algorithm can be adapted to
apply to any likelihood-based statistical model or goodness-of-fit
criterion. Furthermore, although we do not develop the ideas in this
study, it seems clear that other categorized factors used for stan-
dardizing CPUE, such as HPB and month which were categorized in
an ad hoc manner in this study, could be adaptively stratified with
a generalized version of this algorithm.

There are a few aspects of our method that might be improved
in the future. The GLM-tree algorithm tends to subdivide areas
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stratification produced by the GLM-tree algorithm with AIC criteria.

with a substantial amount of fishery data because the total model
deviance is the sum of the deviance estimated for each data point.
In order to overcome this potential problem, it may be possible to
use a weighted deviance in the goodness-of-fit criterion where the
weights correspond to the inverse of the number of data points in
each cell. In this way, all year, quarter and area cells would have
equal weightings in the calculation of the deviance function. In

practice, creating areas with inadequate amounts of effort data to
calculate least squares means should also be avoided, for exam-
ple, by adding a penalty term to the objective function. The overall
tendency of the GLM-tree algorithm to subdivide areas with a sub-
stantial amount of data may be advantageous to avoid creating
strata with missing data. Nevertheless, in some cases, it will not
be possible to calculate the least squares means as the number of
areas increases due to a prevalence of strata with low sample sizes;
this was especially true for Model I1I-A (Fig. 6), for example.

The implementation of the GLM-tree algorithm used in this
study was programmed to create rectangular strata. However, the
actual physical biogeographic provinces that affect the distribution
and catchability of oceanic fishery resources are not always rectan-
gular (cf. Longhurst, 1998). Thus, allowing more flexible shapes for
constructing the area strata to represent relevant biogeographical
and persistent oceanographic features would likely provide better
fits to the swordfish longline fishery data. Given this, the ‘optimal
stratifications’ estimated in this case study may not the best attain-
able because numerous alternative area stratifications constructed
with more flexible shapes exist, which may be able to explain the
CPUE data as well as or better than an optimal rectangular parti-
tioning. In addition, the best model and selected boundaries were
observed to be somewhat variable under the bootstrap resampling
of the CPUE data (Figs. 7 and 8). This variability suggested that out-
liers or future updates of the fishery data would likely alter the
best estimate of area stratification for swordfish in future GLM-tree
analyses.

It was impractical to investigate alternative shapes in this case
study due to the vast number of potential candidate shapes and the
logistical constraints of limited time and computer resources. For
example, in the case study with a sample size of n=29,527 CPUE
observations, the convergence of the GLM-tree algorithm required
the evaluation of 5000 GLMs by ‘biglm’ packages in R to create
approximately 60 areas under Model 0, which took about an hour
of CPU time (Intel(R) Core(TM)2 CPU 6700 @ 2.66 GHz, 8GB DDR2-
SDRAM). In comparison, it took about 15-23 h under Model III-B
while creating roughly 20-30 areas with 2000-3000 evaluations
of GLMs. Increasing the number of estimated model parameters
and increasing the sample sizes can limit the tractability of the
GLM-tree algorithm. In addition, the fact that some fishery data
are specifically aggregated by rectangular grid would also make it
difficult to use non-rectangular shapes for area stratification.

The concordance of estimates of swordfish abundance indices
after some sufficient number of iterations of the GLM-tree algo-
rithm (Figs. 5 and 6) suggested that the calculated abundance
indices were robust and converged as the number of strata
increased. In other words, even though abundance indices from
some models and spatial stratifications achieving the minimum
goodness-of-fit criteria could often not be calculated due to miss-
ing data, swordfish abundance indices could be reasonably well
approximated by one or more models with some sufficient number
of areas. However, the abundance indices estimated using Model
II-B, which included the interaction between year and area effects,
seemed to be more sensitive to the choice of area stratification than
the other models even after a relatively large number of iterations.
Including the Y*A term in GLM was based on the assumption that
variability of CPUE at the local spatial scale and during a specific
year was representative of the abundance in that region. Therefore,
fine-scale stratification of a large spatial region tended to match
up with the local temporal changes in catch rates in the model
that includes the Y*A term while models without the Y*A term
tended to treat local spatial changes of CPUE as observation error.
Determining how much area stratification will affect the estimated
abundance indices will in general depend on characteristics of the
fishery data used. However, localized variability of catch rates at
small spatial scales have been observed not only in swordfish, but
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also in many other fish populations (cf. Punt et al., 2000). Thus, the
inclusion of the Y*A term seemed to have an important effect on
the estimates of abundance indices.

Adaptive area stratification to standardize CPUE becomes more
important when the goal is to estimate annual trends by region for
a spatially structured stock assessment model in order to evalu-
ate local depletion or other effects of spatial structure on relative
abundance trends (Punt et al., 2000). If substantial differences in
abundance trends exist among the defined area strata, which could
be caused by temporal changes in migration or spatio-temporal
differences in fishing effort, these patterns should be detected by
selecting an appropriate area stratification. In general, analyses to
standardize CPUE do not typically include a rigorous analysis of

the appropriateness of an area stratification. Area stratifications
determined in an ad hoc manner may cause misinterpretation of
historical abundance trends and potential population structures
because the assumed spatial structure is insufficient to standardize
the CPUE data. In contrast, this study represents a first step to deter-
mining area stratification in an objective and systematic manner,
while allowing for the flexibility to adapt to a selected objective
function and model structure. In particular, the GLM-tree algo-
rithm appears to be very useful for estimating abundance indices
of species exhibiting heterogeneous spatio-temporal distributions.
Future work will focus on investigating how to incorporate more
detailed information on the biology of the target species and on the
relevant oceanographic features of the fishing grounds.
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