Indian Ocean Swordfish Stock Structure – IOSSS 2009-2012 Preliminary results and conclusions

Jérôme BOURJEA, Sarah LECOULS, Delphine MUTHS, Hugues EVANO, Pete GREWE

IOTC-WPB

July 2011

IOSSS – Project

Ifremer

Délégation océan Indien

Ocean Swordfish Stock

IOSSS Project/ESPADON

Team leader: IFREMER

Funded by European Union (FEP)
France
Région Réunion

Started in February 2009

IOSSS – Project

IOSSS – PROJECT

Délégation océan Indien

- The data quality management Database / Genetic data
- Sampling results Method, summary per component, area grouping
 - Biological data results Size, sex-ratio per area
 - Stomach content analysis Per area, sex and size
 - Isotope analysis Per area, sex and size
 - Genetic analysis mtDNA, microsatellites, conclusion
- Recommendation and perspectives What is expected from IOSSS / recommendation for future genetic works

Team leader:

Michel POTIER

Objectives

- Analyze the feeding habits and variability of the diet between ecosystems.
- Estimate the trophic level of swordfish and study the spatial variability between different ecosystems (equatorial, oceanographic gyre and Mozambique Channel)
- Compare trophic levels and feeding habitats of large predators sharing the same ecosystem (swordfish, tuna, shark – associated to Isotope signatures)

TS .

Ifremer

IOSSS

Number of sampled individuals
By Longhurst area

MONS	EAFR	ISSG
159	163	213

Size distribution of sampled individuals

By Longhurst area

Location of the swordfish samples
In the Western Indian Ocean

IOTC – WPB July 2011

Ifremer

ESPADON

Size frequency distribution of the swordfish samples by sex

By Sex:

ESPADON

IOSSS

- •MALE not different IMMATURE
- •FEMALE ≠ MALE and IMMATURE

VARIANCE ANALYSIS on Prey Number:

Area, Sex and Size effect on the Prey number

IOSSS

Délégation océan Indien

Species Richness:

- •ISSG≠ MONS
- •EAFR not different MONS and ISSG

Délégation océan Indien

CONCLUSIONS

- SWO SIZE and AREA have an effect on the stomach contents
- Variation on stomach contents per AREA: could be explained by (i) preys available per area and (ii) distribution of the swordfish population in the Indian Ocean.
- Variation on stomach contents by SIZE: ontogenetic changes in the diet of the swordfish. Larger SWO feed on few prey and on larger prey.

Contribute to understand the spatial dynamic of SWO

Team leader:

Frédéric MENARD

Objectives

- \bullet To use $\delta^{13} \text{Carbon}$ and $\delta^{15} \text{Nitrogen}$ stable isotopes as trophic markers
- To test the difference in isotope signatures of swordfish caught in several areas of the Indian Ocean to test the influence of sex & size per area
- To analyse the results in terms of trophic position, vertical habitats and environmental gradients

Délégation océan Indien

SAMPLES ANALYSED

IOSSS SWO samples already analysed

Zone	Nombre de mâles	Nombre de femelles	Total
Z1	39	23	62
Z2	11	7	18
Z 3	58	31	89
Z4	30	20	50
Total	138	81	219

500 samples are expected to be analysed in all the Indian Ocean at the end of IOSSS

Factors

Only $\delta^{15}N$ influences the signature of SWO caught according to area = good markers

Factors

There is a significant difference between Z4 (south Madagascar) and the 3 other zones (1, 2, 3)

= samples were pooled Z4 vs Z123

Nombre de mâles	Nombre de femelles	Total
61	108	169
20	30	50
81	138	219
	Nombre de mâles 61 20 81	61 108 20 30

Only δ^{15} N influences the signature of SWO according to SWO size = good markers

Best parcimonial model:

Zone and Size effect, without interaction between both

Délégation océan Indien

FIRST CONCLUSIONS

- SWO SIZE and AREA have an effect on δ^{15} N signature it's not the case of δ^{13} C = in agreement with previous studies on tropical pelagic animals
- Variation on $\delta^{15}N$ per AREA: could be explained by (i) variation on preys per area or (ii) a difference in the basic level per area that is transmitted along the food chain
- Variation on $\delta^{15} N$ by SIZE: could be explained by the fact that larger SWO feed on larger prey
- Information available on SWO seem to validate the hypothesis that there is a basic level of $\delta^{15}N$ different per area (to be detected)
 - Analysis to be extented to the other IOSSS samples