Received: 13, 18 and 19 October 2011

IOTC-2011-WPTT13-11 Rev_2

Outline of climate and oceanographic conditions in the Indian Ocean: an update to August 2011

Institut de recherche pour le développement Francis Marsac IRD University of Cape Town South Africa

TCEMASA

International Centre for Education Marine and Atmospheric Sciences over Africa

1- Long term, basin-scale trends

Variables used :

- <u>SST</u>
 - NOAA-NESDIS Extended Reconstructed Seas Surface Temperature (ERSST.v3b) based on the International Comprehensive Ocean-Atmosphere Data Set, release 2.4 (Smith et al 2008, J. Climate)
 - In situ SST data (no satellite) and improved statistical methods that allow stable reconstruction using sparse data
 - Climatology 1971-2000
 - Series 1854-2011, but more reliable from 1880 onwards
 - SST by 2° area boxes and month
- Wind stress
 - FSU fluxes : Centre for Ocean-Atmospheric Prediction Studies (COAPS)
 - In situ based fields: VOS, moored buoys, drifting buoys
 - Climatology 1971-2000
 - Series 1970-2011
 - Variable : zonal wind stress, by 1° area boxes and month

SST trend

 The West IO gets warmer at a higher rate than the whole IO: 0.13°C/decade

A greater occurrence of warm waters : comparing 1960-65, 1980-85 and 2005-10

- Analysis carried out for Jan-Mar (core of spawning season) in 3 different time periods.
- During the last 50 yrs, there are 2% more 2°box-month strata with SST>26°C (threshold for tuna larvae survival)

SST : variability pattern from principal component analysis

Climate indices : SOI and IOI (up to June 2011)

SST (detrended) and wind stress anomalies

Analysis of relationship Wind stress – SSTa (remote forcing)

	edf	Est.ran	k F p-value	s(anotxlis3)
4.747	9	15.55	<2e-16 ***	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
R-sq.(adj) = 0.213 Deviance explained = 22%				
GCV score = 0.039904 Scale est. = 0.03944 n = 494				

Data processing : detrending SST anomalies the 3-month smoothed SSTa and Wsa (zonal component) then lagged series by 2 months lags (WS precedes SST)

The zonal component of the wind stress in the Central IO is a good predictor of SST variability in the WIO with a 2 months lag

GAM

Zonal wind stress anomaly (2 months earlier)

2 – Regional Analysis

Variables used :

- Mixed Layer Depth and Depth of 20°C isotherm
 - NCEP-GODAS model (<u>http://www.cpc.noaa.gov/products/GODAS/</u>)
 - 1980-2011
 - 1° Lon x 1/3° Lat, by month
- Satellite-derived sea surface Chlorophyll-a
 - SeaWifs 1997-2009
 - Modis 2002-2011
 - 9 km level-3 data aggregated by 1°lon/0.33° lat, by month
- Wind stress
 - Same as previous section, but using the meridional (N-S) component

Mixed Layer Depth : variability pattern from principal component analysis

(25 % of variance explained along axis 1)

Core area of the purse seine free-swimming schools fishery

20°C Isotherm depth anomalies – Dec-Jan

20°C Isotherm depth anomalies – August

Anomalies are more pronounced at the turn of the year compared to the south-east monsoon

Mixed Layer Depth Summary South Equatorial region, WIO

- Deeper thermocline is associated with El Nino and positive Dipole in the WIO, which is mostly visible at the turn of the year
 - Deepest anomalies for Isotherm 20°C are > 40 m in Jan 1998 and 20 m in Jan 2007
- Shallow thermocline have prevailed since the 2007 Nino
- No anomalous deepening of the mixed layer in the Seychelles-Chagos Thermocline Ridge associated to the 2010 warm event

Sea Surface Chlorophyll: variability pattern from principal component analysis

(20 % of variance explained along axis 1)

Surface CHL-a anomalies in the whole WIO : monthly series 1997-2011

Satellite-boarded sensors :

- SEAWIFS series : Sept 1997 Aug 2009
- MODIS series : July 2002 Aug2011
- Note some discrepancies between SEAWIFS and MODIS values during the common period (especially in 2008)

Surface CHL-a anomalies in the whole WIO : a composite series

Weaker Somali upwelling

- Negative anomalies occurring in Dec-Feb are generally related to ENSO-Dipole
- Negative anomalies occurring during the South west monsoon would reflect a weaker than normal Somali upwelling, this being observed every single year since 2008

A focus on the Somali upwelling

Average for July

Wind trend in the Somali upwelling

12-

10-

8-

6-

46

- We use the meridional component of the wind stress and calculate the average for Jun-Aug
- The result points out alternating phases (decadal variability ?)
- Since 1998, greater occurrence of weak winds off Somali, with only 2 years having above normal wind stress (2004-2005)

Chlorophyll a (MODIS), January and August 2009 to 2011

This sequence shows the decreasing trend in primary productivity of the westernmost region of the equatorial Indian Ocean, especially during the boreal winter

Surface chlorophyll trend in Maldives

An anomalous and lasting event in the Central Indian Ocean

- From October 2010 to August 2011 (possibly beyond, data not available yet), an anomalously high productivity was detected in the Central Indian Ocean, between 5°S-15°S/75°E-90°E. The high productivity was triggered by a very shallow thermocline which led to a general cooling of the mixed layer, with a visible trace at the surface.
- The sequence of this anomalous event is represented in the following slides

Anomalies on SST (SSTa), depth of 20°C isotherm (Z20a) and Surface Chlorophyll (Chla)

CHL Summary

- Overall decreasing trend of productivity in the WIO. Levels in 2010 and 2011 are 25% and 30% below the average for respectively Jan-Feb and Aug-Sept
- Aug-Sept low figures would suggest a less active Somali upwelling, as shown by the weaker wind stress nearshore. However, this should be further investigated using other variables.
- An anomalous high productive event developed in the Central Indian Ocean and remained active for at least 7 months. A substantial secondary and tertiary production (which can reach top predators) can be expected for such a lasting event.

3 – Link with PS CPUE

Dramatic reduction of PS free-schools catches in 2010 with a very patchy distribution

CHL-a anomalies and Yellowfin PS CPUE on free schools in the core of the FS area, Jan-Feb

A reminder : Spatial effects of Nino-related events on PS FS CPUE

Jan 1998 / CPUE = 2.0 t/day

Jan 2007 / CPUE = 2.8 t/day

GAM analysis PS CPUE YFT FS vs Env

 R^2 (adjusted) = 0.257 Explained deviance = 27.7% GCV score = 1.049 n=136

PS CPUEs show a dramatic decline for 20°C isotherm depth anomaly greater than 30 m (left panel), whereas the CPUEs exhibit a quasi positive linear trend against surface chlorophyll (right panel)

Summary on PS fishery trend versus the environment

- The variable PS CPUEs (on free schools -FS) are driven by the interannual ocean climate signal, especially in the WIO yellowfin spawning ground (free swimming schools)
- The CPUE series exhibits two record lows related to obvious El Ninoassociated events (1998 & 2007).
- CPUE figures for 2010 are also substantially below-normal, and preliminary information for 2011 suggest that low FS CPUEs are prevailing
- The recent decline of primary productivity in the WIO might lead to a reduced carrying capacity of the ecosystem, with adverse effects on tuna concentration and biological processes.
- Other reasons might also explain the declining trend of FS CPUE (change in fishing strategy due to piracy) . Need to deconvoluate those signals