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Abstract: There are many methods to study the tuna spatial distribution , and it is important to 

know the habitat of the fish species for better conservation and management of marine ecosystems. 

Based on the survey data collected by Huayuanyu No. 18, the vertical profile data of temperature, 

salinity, chlorophyll-a concentration, dissolved oxygen concentration and the catch rate data of 

yellowfin tuna (Thunnus albacares) were applied to develop the ―Integrated Habitat Index (IHI)‖ 

models by the quantile regression method and general linear model (GLM). We used the statistical 

test, Wilcoxon test, residual analysis to test the results from the two kinds of models. The results 

showed that, the quantile regression method could be better than general linear method to study 

the pelagic species spatial distribution; yellowfin tuna’s frequently swimming depth was from 80 

to 200 m in the survey area; the main environmental variables which influence the distribution of 

yellowfin tuna in specific depth stratum were different; the weighted average of temperature and 

dissolved oxygen concentration effected to the spatial distribution of yellowfin tuna significantly.  
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1. Introduction 

There are many methods to study organisms’ habitats (environment), e.g., general linear 

model (Clark et al., 1999; Labonne et al., 2003), general linear additive model (Swartzman et al., 

1992; Maravelias, 1999), multiple linear regression model (Beamish and Lowartz, 1996), 

regression tree model (Norcross et al., 1997; Turgeon and Rodriguez, 2005), logistic regression 

model (Norcross et al., 1999; Guay et al., 2000;Turgeon and Rodríguez, 2005), habitat suitability 

index (HSI) model (Brown et al.,2000;Cade and Noon,2003; William and Maughan,2004), and 

quantile regression model (Terrell et al., 1996; Dunham et al., 2002; Eastwood et al., 2003; Wang, 

2006; Feng et al., 2007; Song et al., 2007; Song and Zhou, 2010). Some of the studies include 

combinations of these models and geographic information systems (GIS) to construct fish habitat 

maps (Riou et al., 2001; Stoner et al., 2001). General linear model (GLM) is the most common 

method in study fish abundance (Allen and Punsly, 1984). Shono et al (2002) applied the GLM to 

study the resource status of yellowfin tuna (Thunnus albacares) in the Indian Ocean, including six 

explanatory variables: year, month, area, hooks between the floats (HBF), sea surface temperature 

(SST), Southern Oscillation index and the interaction among them. Nishida et al. (2003) used 

general linear model- habitat based model (GLM habitat HBM) to analyze the CPUE 

standardization of yellowfin tuna, results showed that, the CPUE that was standardized by 

GLM/HBM was consistent with the CPUE estimated by GLM. 

Although general linear model have their advantages, they also have some disadvantages (Song 

and Zhou, 2010). In general linear model, the CPUE was defined as a linear combination between 

dependent variable and explanatory variables. These variables are usually continuous or discrete, 

and the continuous variables usually were classified as discrete variables, which possibly changed 

the original character of the variables. Thereby, the uncertainty of the results was increased. In 

statistics, quantile regression is a type of regression analysis, (1) quantile regression can be used to 

estimate the median, rather than ordinary least squares regression to estimate the mean, and will 

be more robust in response to large outliers. Quantile regression can be seen as a natural analogue 

in regression analysis to the practice of using different measures of central tendency and statistical 

dispersion to obtain a more comprehensive and robust analysis (Koenker, 2005); (2) In ecology, 

quantile regression has been proposed and used as a way to discover more useful predictive 

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Ecology
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relationships between variables in cases where there is no relationship or only a weak relationship 

between the means of such variables. The need for and success of quantile regression in ecology 

has been attributed to the complexity of interactions between different factors leading to data with 

unequal variation of one variable for different ranges of another variable (Cade and Noon, 2003). 

 General linear model as a common method, it was applied extensively in CPUE 

standardization and habitat investigation, but there is no study on the performance comparison 

about quantile regression and general linear models for prediction of the integrated habitat index 

of tuna species. In this study, by using the quantile regression method and general linear model, 

the Integrated Habitat Indices (IHI) models were developed for yellowfin tuna in the Indian Ocean 

based on the data collected by Huayuanyu No. 18 (HYY18) in 2005. The IHI models were used to 

evaluate responses of yellowfin tuna to environmental variables and to predict their spatial 

distribution. The models were validated with the environmental variables and fishery data 

collected by Huayuanyu No. 19 (HYY19). The objectives of this study are to (1) determine an 

optimal method to study Integrated Habitat Indices (IHI) of yellowfin tuna; (2) define key habitat 

variables to influence the spatial distribution of yellowfin tuna; and (3) develop forecasting 

models for yellowfin tuna spatial distribution based on the key habitat variables. 

http://en.wikipedia.org/wiki/Complexity
http://en.wikipedia.org/wiki/Data
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2. Materials and methods 

2.1 Materials 

2.1.1 Survey vessels and fishing gear 

Data were collected from operations on two longliners, Huayuanyu 18(HYY18) and 

Huayuanyu 19(HYY19), in 2005. Two vessels’ specifications are same. They were equipped with 

super spool and chill sea water equipment. Two vessels’ length over all, mould breadth, mould 

depth, gross tonnage, net tonnage and main engine power is 26.12 m, 6.05 m, 2.70 m, 150.00 t, 

45.00 t and 407.00 kW, respectively. 

The configurations of the gear used are shown in Table 1 of Song and Zhou (2010). The 

maximum diameter of the branch lines was 5mm. Two configurations of fishing gear were used, 

conventional and experimental gears. Their configurations and designs are shown in Song et al. 

(2009). Fishing parameters, e.g. fishing time, total number of hooks per set, bait, and deploying 

method etc. are shown in Song et al. (2009) and Song and Zhou (2010). 

2.1.2 Survey duration and area 

The survey duration was from September 15 to December 12 in 2005. Fishing took place 

mainly between about 1°N and 10°N and between about 62°E and 70°E (Fig. 1). The data 

collection locations were shown in Fig.1. During the survey, two fishing vessels targeted bigeye 

tuna (Thunnus obesus), and the bycatch included yellowfin tuna, swordfish (Xiphias gladius), 

albacore (Thunnus alalunga) and billfishes (Istiophoridae). 

 

Fig. 1 Huayuanyu 18 and Huayuanyu 19 measured positions in 2005 

(○Huayuanyu 18；△ Huayuanyu 19) 

 

2.1.3 Instrumentation and measurement 

The environmental sampling instruments included Submersible Data Logger (SDL), XR-620 
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(RBR Ltd., Ottawa, Ontario, Canada) and Temperature Depth Recorders (TDR), TDR-2050 (RBR 

Ltd.) (14 in total), Conductivity Temperature Depth Recorder (CTD), SBE37SM (SeaBird Co., 

Bellevue, Washington, USA) and three dimension (3D) Aquadopp Current Profile (ADCP), 

Aquadopp-2000 (NORTECK Co., Vangkroken, Norway) which has the same sampling sites as 

those of XR-620. The measurement ranges of environmental variables and the precision of the 

data were shown in Song et al. (2009). The water temperature, salinity, dissolved oxygen and 

chlorophyll-a were measured at sampling sites. Considering the accuracies of data from various 

instruments and requirements of the study, the data of depth and temperature were processed to 

one effective decimal place, salinity, dissolved oxygen, and catch rate to two decimal places, and 

chlorophyll-a and 3D current to three decimal places. 

The hook depth measuring method by TDRs and the environmental variables measuring 

method are shown in Song and Zhou (2010). The following information was collected: 

deployment position and time, course and speed, line shooter speed, number of hooks between 

floats (HBF), time interval between deploying fore and after branch lines, number of hooks, time 

of retrieving lines, hook position codes at which fish were caught, number of hooked tuna per 

fishing operation, and positions at which yellowfin tuna were hooked. 

2.2 Data processing  

The catch rate of yellowfin tuna for station i, CPUEi, was calculated as follows: 

1000i
i

i

U
CPUE

f
                                               (1) 

where i denotes station, Ui is the number of yellowfin tuna hooked at station i, fi is the number 

of hooks deployed at station i, and i=1,2,3, ..., 48. 

The data for the yellowfin tuna were grouped into depth strata. The data were assigned to 

seven depth strata of 40 m each (80-120 m, 80-120 m, … 320-360 m).  

The catch rate, CPUEij, of HYY18 at sampling station i in depth stratum j was calculated by: 

1000
ij

ij

ij
H

N
CPUE                                          (2) 

where Hij is the number of hooks deployed by HYY18 at station i in depth stratum j, and Nij is the 

number of yellowfin tuna caught by HYY18 at station i in depth stratum j. Nij was calculated as: 

i

j

ij N
N

N
N                                                     (3) 

where Nj is the number of yellowfin tuna caught by HYY18 and HYY19 in depth stratum j during 

the survey, following Song et al. (2008; 2009), N is the number of yellowfin tuna caught by 
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HYY18 and HYY19 during the survey. In 2005, the data on depth of capture were collected for 299 

of the 516 yellowfin tuna (56.8%). Ni is the number of yellowfin tuna caught by HYY18 at 

sampling station i, and i = 1, 2, 3, ..…., 48.  

The catch rate of yellowfin tuna in depth stratum j, CPUEj, was clculated as follows: 

1000
j

j

j

N
CPUE

f
                                               (4) 

where j denotes stratum, fj is the number of hooks deployed at stratum j, and j=1,2,3, ..., 7. 

The data processing procedures to analyze the catch rate data at the specific depth stratum 

and at each sampling station are shown in Song and Zhou (2010). The overall values of CPUEj 

for 2005 are shown in Fig. 2. 

The weighted average value of environmental variables based on the catch rate of different 

depth stratum at sampling station i was calculated, following Song et al. (2007) , and Song and 

Zhou (2010), as: 

/i j ij jENV CPUE ENV CPUE  （ ）                               (5) 

where ENVi was the weighted average environmental variable of whole water bin, the 

environmental variable includes temperature (Ti), salinity (Si), chlorophyll-a concentration (Chi), 

dissolved oxygen concentration (DOi), horizontal current (HCi), and vertical current (WCi) at 

sampling station i from HYY 18, and ENVij was the value of the above environmental variables at 

sampling station i in depth stratum j (i.e., 80～120 m, 120～160 m, . . ., 320～360 m). Tij, Sij, 

Chij, and DOij were the arithmetic means measured with the XR- 620 at sampling station i in 

depth stratum j. HCij and WCij were the arithmetic means measured with the Aquadopp-2000 at 

sampling station i in depth stratum j. 

The shear of horizontal current component (denoted as  ) was estimated by integrating the 

original data measured with the Aquadopp-2000 from the near-surface to the largest predicted 

hook depth (z) at each sampling station i (Bigelow et al., 2006). The coefficient   
was used to 

study the potential CPUE of sampling station i. 

1
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                       (6) 

where


 was the shear of horizontal current component, βj was the East-Westward component of 

current in the j depth stratum,δj was the North-Southward component of current in the j depth 

stratum, τj was the depth of j depth stratum.
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Thermocline intensity (TIi) (°C m
-1

) was calculated by temperature profile measured by 

XR-620 at station i as:  

u b
i

b u

T T
TI

D D





                                                      (7) 

where uT , bT , uD , and bD was thermocline’s upper temperature (°C), bottom 

temperature (°C), upper depth (m) and bottom depth (m). 

2.3 Developing quantile regression models (QRM)  

The development of quantile regression models for CPUEij and CPUEi is detailed in Song 

and Zhou (2010). In this study, the prediction model was developed based on the data measured 

by XR-620 of HYY 18 at 30 sampling stations. The following six variables were considered as the 

independent variables in the quantile regression models of yellowfin tuna catch rate at sampling 

station i in depth stratum j: temperature (Tij), salinity (Sij), chlorophyll-a concentration (Chij), 

dissolved oxygen concentration (DOij), horizontal current (HCij), and vertical current (WCij). 

Fifteen interaction terms of these six variables were also considered.  

The full regression model for describing the relationship between the expected catch rate at 

sampling station i in depth stratum j, QRMijCPUE versus Tij, Sij, Chij, DOij, HCij, WCij, and the 

interaction terms can be written as: 

QRMij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij

ij ij

CPUE C a T b S c Ch d DO e HC f WC g TS h TCh k TDO l THC

m TWC n SCh o SDO p SHC q SWC r ChDO s ChHC t ChWC u DOHC v DOWC

w HCWC

          

         

                                                                                                                                        (8)ij

 

where Cij was the constant, TSij was the interaction of temperature and salinity, TChij was the 

interaction of temperature and chlorophyll-a concentration, . . ., HCWCij was the interaction of 

horizontal current and vertical current, and εij was the error term at sampling station i in depth 

stratum j. The values of aij, bij, cij, dij, eij, fij . . . and wij were their corresponding parameters. 

The full regression model for describing the relationship between the expected catch rate at 

sampling station i, QRMiCPUE  versus weighted average Ti, Si, Chi, DOi, i , WCi, TIi and the 

interaction terms can be written as: 

QRMi i i i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i

CPUE C a T b S c Ch d DO e f WC g TI hTS k TCh l TDO mT

nTWC oTTI p SCh q SDO rS s SWC t STI u ChDO v Ch wChWC

x ChTI y DO z DOWC aa DOTI ab WC ac TI ad W

 

 

  

           

          

                          (9)i iCTI 

where iC  was the constant, TSi was the interaction of temperature and salinity, , . . . WCTIi was 

the interaction of vertical current and thermocline intensity; i  was the error term of expected 

catch rate at sampling station i. The ia , ib , ic , id , ie , if  … … iad were their corresponding 

parameters. 
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It is more appropriate to select θ values between 0.50 and 0.95 to build the upper-quantile 

model (Feng et al., 2007). In this study, we used the statistical software Blossom to process the 

data, which was developed by Midcontinent Ecological Science Center (U.S.Geological Survey). 

2.4 Developing general linear models (GLM) 
In order to compare with the quantile regression models, the environmental variables in 

different depth strata which we inputted into the GLM models were same, we applied R project 

2.13 (Chambers, 1992; Fox, 2005, 2007) to fit the linear models. 

The full regression model for describing the relationship between the expected catch rate at 

sampling station i in depth stratum j, GLMijCPUE versus Tij, Sij, Chij, DOij, HCij, WCij, and the 

interaction terms can be written as: 

( )GLMij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij ij

LN CPUE CONSTANT INTERCEPT a T b S c Ch d DO e HC f WC g TS

h TCh k TDO l THC m TWC n SCh o SDO p SHC q SWC r ChDO s ChHC

              

                   

                                                         (10)ij ij ij ij ij ij ij ij ijt ChWC u DOHC v DOWC w HCWC        

2 (0, )ij S 
 

where LN is Napierian Logarithm, CONSTANTij was generally 10% of total average nominal 

CPUEij. ijINTERCEPT  and ij   were vertical intercepts and error terms. The ija  , ijb  , ijc  , 

ijd  ,  … … ijw 
 
were their corresponding parameters. 

The full regression model for describing the relationship between the expected catch rate at 

sampling station i, GLMiCPUE  versus weighted average Ti, Si, Chi, DOi, i , WCi, TIi and the 

interaction terms can be written as: 

( )GLMi i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i

LN CPUE CONSTANT INTERCEPT a T b S c Ch d DO e f WC g TI

hTS k TCh l TDO mT nTWC oTTI p SCh q SDO r S s SWC t STI

u ChDO v Ch w ChWC x ChTI



 



              

                    

       

                                                                                        (11)

i i i i i i i i i i

i i i

y DO z DOWC aa DOTI ab WC ac TI

ad WCTI

  



       

 

2 (0, )i S   

where CONSTANTi was generally 10% of total average nominal CPUEi. iINTERCEPT  and 

i   were vertical intercepts and error terms. The ia  , ib  , ic  , id  ,  … … iad 
 
were their 

corresponding parameters. 

 The AIC and BIC values (Sakamoto et al, 1986; Moore, 2000) were used to test the model 

goodness-of-fit. At first, we input all parameters into the models, according to the P value to select 

the parameters, and the smaller of AIC and BIC value, the better of the model goodness-of-fit. 

Finally, the independent variables in model shall be with significant (P < 0.05). We used GLM 
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model to get the CPUE prediction models in specific depth strata and the whole water bin. 

2.5  IHIij calculation based on the GLM and QRM 

Based on the regression models (Eq. 8, Eq. 10), 
QRMijCPUE  and 

GLMijCPUE were estimated at 

sampling station i in depth stratum j. QRMijIHI
 
and GLMijIHI  were calculated by the following 

equations: 

max

QRMij

QRMij

QRM

CPUE
IHI

CPUE
                                             (12) 

max

GLMij

GLMij

GLM

CPUE
IHI

CPUE
                                             (13) 

 

where 
QRMmaxCPUE

 and GLMmaxCPUE  were the maximum value among all 
QRijCPUE  and 

GLMijCPUE  at sampling station i in depth stratum j, specifically. 

2.6 IHI  calculation based on the GLM and QRM at sampling station i 

Based on the regression models (Eq.9, Eq.11), QRMiCPUE
and GLMiCPUE  at sampling 

station i were estimated. QRMIHI  and GLMIHI were derived from QRMiCPUE and 

GLMiCPUE using the following equations: 

max

QRMi

GRM

QRMi

CPUE
IHI

CPUE
                                               (14) 

max

GLMi
GLM

GLMi

CPUE
IHI

CPUE
                                               (15) 

where 
maxQRMiCPUE

 and maxGLMiCPUE  were the maximum value among all 
QRMiCPUE  and 

GLMiCPUE , specifically. 

 

2.7 The predictive power of the GLM and QRM 

The predictive power of the IHI models were qualitatively analyzed by plotting the map of 

average value of predicted IHIj and observed CPUEj. The nonparametric test, two related samples 

Wilcoxon test (SPSS 16.0), was used to test the difference between QRMijIHI
 
and GLMijIHI , 

QRMIHI
 and GLMIHI

. If there were significant difference between them, we would use other 

statistical test to testify the predictive power of QRM and GLM. According to the predicted 

QRMijCPUE
, GLMijCPUE

, QRMiCPUE
and GLMiCPUE

, we used quantile comparison (QQ) plot 
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of residuals between predicted QRMijCPUE
, GLMijCPUE

, QRMiCPUE
and GLMiCPUE

 and 

their respective observed CPUE by R-project 2.13 to analyze the reliability of the models 

(Eq.16,17,18,19).  

Residual = -QRMij QRMij ijCPUE CPUE                                    (16) 

Residual = -QRMi QRMi iCPUE CPUE                                     (17) 

Residual = -GLMij GLMij ijCPUE CPUE                                    (18) 

Residual = -GLMi GLMi iCPUE CPUE                                     (19) 

2.8 Validation of the QRM and GLM  

The QRMIHI and GLMIHI  models were validated by applying to the observed CPUE data 

from HYY 18 and HYY 19 (operation duration and area were Sep.～Dec. 2005 and 0ºN～8ºN, 

61ºE～71ºE, respectively). The nominal CPUE from HYY 18 and HYY 19 and the IHI  isoline 

from HYY 18 at all stations were mapped by Marine explorer 4.71. 



IOTC–2011–WPTT13–32 

Thirteenth Working Party on Tropical Tunas, Maldives, 16–23 October 2011        IOTC–2011–WPTT13–32 
Page 11 of 25 

Table 1 Estimation parameters of optimal predicting equation 

 80-120 120-160 160-200 200-240 

Depth 

stratum (m) 

QRM GLM QRM GLM QRM GLM QRM GLM 

 θ=0.90 AIC=89.38 

BIC= 99.19 

 

θ=0.85 AIC=78.84 

BIC=95.65 

θ=0.75 AIC= 56.55 

BIC= 73.36 

θ=0.85 AIC= 63.83 

BIC= 75.04 

 PMa 

Cj (constant) 

/Intercept 

256.73 -1792.40 -4226.95 -520.08 -8333.64 21965.81 -52.03 -52.54 

aj(Tij) -10.19 83.91 -27.20 -3.12 -12.92 -1421.34 0 2.71 

bj (Sij) 0 50.81 132.89 15.88 240.67 -626.60 0 - 

cj (Chij) 0 - 0 431.10 0 3873.11 1549.15 284.47 

dj (DOij) 0 -100.51 0 1.08 8.80 -994.74 0 15.27 

ej(HCij) 0 - 0 -128.05 0 - 0 7.30 

fj (WCij) 0 - 5646.19 223.13 0 - 0 - 

gj (TSij) 0 -2.38 0 - 0 40.56 0 - 

hj (TChij) 0 - 0 -18.45 0 -266.49 0 - 

kj (TDOij) 0 - 0 - 0 -1.74 0 -0.95 

lj (THCij) 0 - 0 9.04 0 - 0 - 

mj (TWCij) 0 - -319.79 -14.36 0 - 0 - 

nj (SChij) 0 - 0 - 0 - 0 - 

oj (SDOij) 0 2.85 0 - 0 28.89 0 - 

pj (SHCij) 0 - 0 - 0 - 0 - 

qj (SWCij) 0 - 0 - 0 - 0 - 

rj(ChDOij) 0 - 0 - 0 - 0 - 

sj (ChHCij) 0 - 0 -253.64 -253.64 0 - 270.05 0 - 

tj (ChWCij) 0 - 0 - 0 - 0 - 

uj (DOHCij) 0 - 0 - 0 -4.39 0 -2.76 

vj (DOWCij) 0 - 0 - 0 - 0 - 

wj (HCWCij) 0 - 0 - 0 - 0 - 
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a Parameters. 

 

Table 1(continued) Estimation parameters of optimal predicting equation 

Depth stratum(m) 240-280 280-320 320-360 

 QRM  GLM QRM  GLM QRM  GLM 

 θ=0.90 

AIC= 63.73 

BIC= 69.34 θ=0.80 

AIC= 73.46 

BIC= 79.07 θ=0.90 

AIC= 54.93 

BIC= 71.74 

 PMa 

Cj （constant） 

/Intercept 

/INTERCEPT 

-491.38 -14.64 5.02 -14.89 139.83 -4184.54 

aj(Tij) 36.60 - 0 - -10.78 198.97 

bj (Sij) 0 - 0 - 0 140.18 

cj (Chij) 14501.80 295.15 0 277.96 0 2.73 

dj (DOij) 0 1.313 0 1.39 0 - 

ej(HCij) 0 - -5.20 - -110.51 87.52 

fj (WCij) 0 - 206.03 - 0 -7519.96 

gj (TSij) 0 - 0 - 0 3148.20 

hj (TChij) -1082.29  0 - 0 -6.71 

kj (TDOij) 0 - 0 - 0 - 

lj (THCij) 0 - 0 - 8.77 - 

mj (TWCij) 0 - 0 - 0 -4.67 

nj (SChij) 0 - 0 - 0 - 

oj (SDOij) 0 - 0 - 0 - 

pj (SHCij) 0 - 0 - 0 - 

qj (SWCij) 0 - 0 - 0 - 

rj(ChDOij) 0 - 0 - 0 - 

sj (ChHCij) 0 - 0 - 0 238.01 

tj (ChWCij) 0 - 0 - 0 -99.94 

uj (DOHCij) 0 - 0 - 0 - 

vj (DOWCij) 0 - 0 - 0 - 

wj (HCWCij) 0 - -434.82  0 - 
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a Parameters. 
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3.  Results 

3.1 Predictive models of the catch rate  

The estimated parameters of the predictive models of the catch rate, QRMijCPUE  and 

GLMijCPUE
, at sampling station i , depth stratum j were summarized in Table 1. The predictive 

models of the catch rate, QRMijCPUE , were developed with a different value of quantile (θ). The 

value of quantile (θ) was from 0.75 to 0.90 for various depth strata. The key environmental 

parameters to construct the QRMijCPUE
and GLMijCPUE

 models for various depth strata were 

different from depth strata (Table 1).  

The optimal model of the catch rate, QRMiCPUE
 and GLMiCPUE

, at sampling station i 

were developed.  

When θ was 0.95, the optimal QRMiCPUE model was derived as: 

ˆ  -125.46 7.15 108.49 -6.05QRMj j j jCPUE T DO TDO                      (16) 

The P-values of Ti, DOi, and TDOi were all less than 0.05. Weighted average Ti, DOi, and the 

interaction term TDOi were identified as key variables (Eq. 16).  

The optimal GLMiCPUE
model was derived as: 

-4184.54 198.97 140.18 +2.736 +87.52 -7519.958 +

 3148.20 -6.71  -4.67 +238.01 -99.944                                 (17)

GLMi i i i i i

i i i i i

CPUE T S Ch WC

TI TS T SWC STI





  
  

The P-values of Ti, Si, Ch, i , WCi, TIi, TSi, iT , SWCi and STIi were all less than 0.05. 

Weighted average Ti, Si, Ch, i , WCi, TIi  and the interaction terms TSi, iT , SWCi and STIi  

were identified as key variables (Eq. 17). 

3.2 The predictive power of QRMIHI  and GLMIHI   

In Fig.2, the QRMjIHI
 
and observed CPUEj in the corresponding depth stratum had almost 

similar trend, but there were differences for the depth strata of 160～200 m and 240～280 m. 

GLMjIHI was a little lower than QRMjIHI . GLMjIHI  in depth stratum of 80～120 m was lower 

than that in the depth strata of 120～160 m and 160～200 m, which was different from QRMjIHI
 

and observed CPUEj. The Fig.2 showed that the IHI were relative high in the 80～240 depth strata. 
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The Table.2 showed that, there were significant difference between the QRMijIHI and GLMijIHI
, 

QRMIHI and GLMIHI . Comparing Fig.3 to Fig.4, the residuals between QRMiCPUE
, QRMijCPUE

 

and observed CPUE had more effective values in the red dotted line area and obeyed normal 

distribution, so the QRM was better than the GLM.  
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Fig.2  The arithmetic average IHI and the CPUE of yellowfin tuna in respective depth stratum. 

Table 2. The results of Wilcoxon signed-rank test on the differences between QRMijIHI
 

and 

GLMijIHI
 

, QRMIHI  and GLMIHI   

Depth stratum Df 
Wilcox.test 

Za* P value(two-tailed) 

80-120 29 -4.721 0.000 

120-160 29 -4.573 0.000 

160-200 29 -2.478 0.013 

200-240 29 -4.021 0.000 

240-280 29 -4.371 0.000 

280-320 29 -4.456 0.000 

320-360 29 -4.371 0.000 

QRMIHI  and GLMIHI  29 -2.828 0.005 

Za was based on the positive ranks. 

 

 

app:ds:residual
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Fig.3 The quantile comparison (QQ) plot of residual between the observed CPUE and predicted CPUE 

from QRM of yellowfin tuna in respective depth stratum. 

 

Fig.4 The quantile comparison (QQ) plot of residual between the observed CPUE and predicted CPUE 

from GLM of yellowfin tuna in respective depth stratum. 

3.4  Validation of the GLM and QRM 

Applying the longline CPUE data from HYY 18 and HYY 19 in 2005 to validate the IHI  

model, in the area of 1ºN～9ºN,61ºE～71ºE, the validation result of the IHI  model for the water 

bin was shown in Fig.5 and Fig.6. In Fig.5(a) and (b), the higher catch rate were almost distributed 

in the area of 3°40′N～6°20′N, 62°00′E～67°E, which was almost consistent with our prediction 

results. In Fig.5(a), the high catch rate distributed in the area 3°40′N～6°20′N, 62°E～69°E where 

the IHI were higher than 0.27; In Fig.5(b), the high catch rate in the area of 3°40′N～6°30′N, 

62°E～67°E distributed in the area where the IHI were higher than 0.27, and partly in the area of 

4°40′N～5°20′N, 67°30′E～69°E, the IHI was between 0.09 and 0.25. 

In Fig.6(a) and (b), the high catch rate were mainly distributed in the area of 3°40′N～6°20′N, 

62°00′E～67°E, the higher catch rate were almost distributed in the higher IHI area. Thus, the 
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range of higher IHI in Fig.6(a) included more higher catch rate than the IHI in Fig.6(b). 

        

(a)                                        (b) 

Fig.5 The catch rates of yellowfin tuna from HYY 18 and the isolines of the yellowfin tuna’s 

QRMiIHI (a) and GLMiIHI (b) predicted using the field measured environmental data of HYY 18. 

 

(a)                                        (b) 

Fig.6 The catch rates of yellowfin tuna from HYY 19 and the isolines of the yellowfin tuna’s 

QRMiIHI (a) and GLMiIHI (b) predicted using the field measured environmental data of HYY 18. 
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4.  Discussion 

4.1  The predictive power of the GLM and QRM models 

In general, the predictive power of the IHIQRM  IHIGLM models were good. The trends of the 

IHIQRM were similar to those of the CPUEj of yellowfin tuna at the respective depth strata (Fig.2). 

The IHIQRM, IHIGLM and catch rate was relatively high at the depth strata of 80～120, 120～160 m 

and 160～200 m, which indicated that the frequently swimming depth range for yellowfin tuna 

was from 80 to 200 m. Mohri and Nishida (2000) suggested that the optimal depth range of 

yellowfin tuna was from 80 to 120 m. Song et al. (2008) suggested that the depth stratum of 

100.0～179.9 m was the frequently swimming depth range for yellowfin tuna. The results of 

Mohri and Nishida (2000) and Song et al. (2008) were almost consistent with the result of this 

study. 

4.2 The reliability of IHIij and IHI  predictive method  

The reliability of models developed by using the quantile regression method was better than  

general liner method. In general, the IHIij predictive models could be used to predict the spatial 

distribution of yellowfin tuna. The IHIQRM and IHIGLM
 
value of yellowfin tuna were higher in 

depth strata of 80～120 m, 120～160 m, and 160～200 m (Fig.2). In different depth strata, the 

key variables to predict the models were different. That is because the distributions of yellowfin 

tuna at different depth were different. The variables to effect the distribution of yellowfin tuna at 

different depth were also different (Table 1). The yellowfin tuna have obvious habitat selection, 

and usually were affected by the environmental variables, such as temperature, salinity and so on 

(Block et al., 1997). Antonio et al. (2004) found that the yellowfin tuna has apparent seasonal 

south-northward migration characteristic, and its migration path was relevant to the route of 

current moving. The distribution of yellowfin tuna have greatly influenced by the water 

temperature, salinity, and dissolved oxygen (Korsmeyer et al., 1997).  

The predictive model QRM were more effective than GLM. The Wilcoxon test showed, there 

were significant difference between QRMijIHI
 
and GLMijIHI

, QRMIHI  and GLMIHI (Table 2). 

The results of the QQ plot showed that, the reliability of models developed by using the QRM 

were better than GLM. Eastwood and Meaden (2004) mentioned that quantile regression has all 

the advantages of ordinary least-squares regression, and an additional advantage of being 
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distribution-free. It can be used to estimate the effects of limiting factors, and thus provide a good 

means to evaluate how a species may respond to changes in its environmental variables. When the 

errors are not normally distributed and only part of the limiting factors is measured, it can yield 

several estimation results in different quantiles, and may more accurately reflect the responses of a 

species to habitat variables, particularly for the regression models of the upper quantile (Cade and 

Noon, 2003; Wu and Ma, 2006). In the areas of  1°30′N～9°N, 62°E～64°30′E, 3°40′N～6°N, 

67°E～70°E, the distribution area of higher catch rate from HYY 19 was almost consistent with the 

distribution area of higher IHI (Fig.6(a)).  

The QRM were better for the study of habitat integrated index than GLM. The 
QRMIHI  

prediction model included the weighted average temperature and dissolved oxygen. The 
GLMIHI  

prediction model included the temperature, salinity, chlorophyll-a, the shear of horizontal current 

component and thermocline intensity. In the field, it is difficult to measure the environment 

variables. The quantile regression method included the less variables, which could reduce the cost 

of the survey. In addition, the results from the quantile regression models were more reliable.  

 

4.3 Key environmental parameters to influence the spatial distribution of yellowfin tuna  

The weighted average temperature and dissolved oxygen were the crucial variables to the 

spatial distribution of yellowfin tuna. For the QRMIHI  prediction model, there was the close 

relationship between the predicted CPUE and the weighted average temperature and dissolved 

oxygen. Temperature was the main limiting factor to effect the migration of yellowfin tuna, which 

limited the heart’s capacity to export dissolved oxygen, then influenced the swimming speed of 

yellowfin tuna (Maury et al., 2001). Nishida et al. (2001) found that the distribution of adult 

yellowfin tuna was influenced by the spatial and seasonal change of water temperature. Brill et al. 

(1999) suggested that the temperature, dissolved oxygen and thermocline depth influenced the 

spatial distribution of yellowfin tuna, and the temperature and dissolved oxygen also influenced 

the spawning behavior of yellowfin tuna in the Hawaii Islands waters. Schaefer (1996) reported 

the moving path of yellowfin tuna was influenced by the seasonal change of 18℃ sea surface 

temperature. Block et al. (1997) indicated a large number of yellowfin tuna gathered into the 

dissolved oxygen concentration 6.8～8.6 mg L
-1

 area by the acoustic telemetry study. We suggest 
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that the weighted average temperature and dissolved oxygen data should be input into the model 

to standardize the yellowfin tuna CPUE. 
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5.  Conclusion 

The predictive power of QRMIHI models developed in this study was good. The IHI  

models developed by using the quantile regression in this study could reflect the habitat selection 

of the yellowfin tuna more accurately, in general. We suggest the quantile regression method 

could be used to study the spatial distribution of pelagic fish caught by longline fishery. The 

optimal inhabiting depth stratum of yellowfin tuna was 80～200 m in the survey area. The IHI 

within the area defined by 4°N～9°N, 62°E～63°30′E had the largest values, and the IHI in 

3°40′N～6°20′N, 63°30′E～69°E had larger values, the IHI in the other areas had smaller values. 

We suggest that the weighted average temperature and dissolved oxygen data should be included 

in the CPUE standardization to estimate the relative abundance of yellowfin tuna.   
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