Updated Japanese longline CPUE for bigeye tuna in the Indian Ocean standardized by GLM for the period from 1960 to 2010

Hiroaki OKAMOTO

National Research Institute of Far Seas Fisheries 5 chome 7-1, Orido, Shimizu-Ku, Shizuoka-City, 424-8633, Japan

Abstract

Standardized Japanese longline CPUE for bigeye tuna was updated from 1960 up to 2010 by using GLM (CPUE-LogNormal error structured model). Method of standardization was as same as that used for bigeye assessment in 2010. NHF (Number of Hooks between Float) and material of main and branch lines were applied to standardize the change in catchability of longline gear.

In the tropical Indian Ocean, CPUE continuously decreased from around 9.3 (real scale) in 1960 to 3.2 in 2002 when it has increased to 4.2 - 4.7 in 2004 through 2008, about the same level as that in the late 1990's. However it has decreased again to about 3.3 in 2009 and 3.1 in 2010. Standardized CPUE in the south area which didn't show clear trend during the period between 1984 and 2000 (CPUE was 3.5 on average), decreased to 2.5 in 2003. It increased to 3.2 in 2004 after when it decreased to 1.3 in 2008 and increased to 1.7 in 2010. As a result, CPUE in all Indian Ocean, which had been kept in the same level around 5 to 7 until 1993 decreased to 3.0 in 2002, increased a little in 2003 and 2004 after when it decreased to about 3.0 in 2008 and 2.5 in 2009 and 2010.

1. Introduction

. Standardized Japanese longline CPUE for bigeye tuna was updated from 1960 to 2010 by GLM (CPUE-LogNormal error structured model) in order to provide abundance index to be applied for bigeye assessment in IOTC WPTT meeting in 2011. Method of standardization was the same as that used for bigeye assessment in 2010 (Okamoto and Shono, 2010).

2. Materials and methods

Area definition:

Area definition used in this study (Fig. 1) is the same as that used in the IOTC bigeye assessment in 2006 (Okamoto and Shono, 2006) which consists of seven areas. Main fishing ground of Japanese longline fishery for bigeye was divided into seven areas and CPUE standardization was done for three cases of area combinations, Aropical (areas 1-5), South (areas 6 & 7) and ALL (areas 1-7) Indian Ocean. Area 67 in the south area was not used in this study.

Environmental factors:

As environmental factors, which are available for the analyzed period from 1960 to 2009, SST (Sea Surface Temperature) was applied. The original SST data, whose resolution is 1-degree latitude and 1-degree longitude by month from 1946 to 2010, was downloaded from NEAR-GOOS Regional Real Time Data Base of Japan Meteorological Agency (JMA).

http://goos.kishou.go.jp/rrtdb/database.html

It is necessary to get password to access the data retrieving system. The original data was recompiled into 5-degree latitude and 5-latitude longitude by month from 1960 to 2010 using

the procedures described in Okamoto et al. (2001), and used in the analyses.

Catch and effort data used:

The Japanese longline catch (in number) and effort statistics from 1960 up to 2010 were used. The catch and effort data set from aggregated by month, 5-degree square, NHF (the number of hooks between floats, and main line material, was used for the analysis. Data in strata in which the number of hooks was less than 5000 were not used for analyses. As the NHF information does not available for the period from 1960 to 1974, NHF was regarded to be 5 in this period. Main line material was categorized in to two, 1 = Nylon and 2 = other.

GLM (Generalized Linear Model):

CPUEs based on the number of catch was used;

The number of caught fish / the number of hooks * 1000

The model used for GLM analyses (CPUE-LogNormal error structured model) was as follows.

Model (CPUE-LogNormal error structured model):

```
 \begin{split} & \text{Log (CPUE}_{ijkl} + \text{const}) = \mu + \text{YR}(i) + \text{MN}(j) + \text{AREA}(k) + \text{NHFCL}(l) + \text{SST}(m) + \text{ML}(n) + \text{YR}(i) * \text{AREA}(k) + \text{MN}(j) * \text{AREA}(k) * \text{NHFCL}(l) + \text{AREA}(k) * \text{SST}(m) + \text{NHFCL}(l) * \text{ML}(n) + \text{e}(ijkl....) \end{split}
```

Where Log: natural logarithm,

CPUE: catch in number of bigeye per 1000 hooks,

Const: 10% of overall mean of CPUE μ : overall mean (i.e. intercept),

YR(i): effect of year,

MN(j): effect of fishing season (month),

AREA(k): effect of sub-area,

NHFCL(1): effect of gear type (class of the number of hooks between floats),

 $\mathrm{SST}(m)$: effect of SST,

ML(n): effect of material of main line,

YR (i)*AREA (k): interaction term between year and sub-area,

MN (j)*AREA (k): interaction term between fishing season and sub-area,

AREA (k)*NHFCL (l): interaction term between sub-area and gear type,

AREA(k)*SST (m): interaction term between sub-area and SST,

NHFCL(l)*ML(n): interaction term between sub-area and MLD,

 $e(ijkl..) \ \vdots \quad error \ term.$

The number of hooks between float (NHF) was divided into 6 classes (NHFCL 1: 5-7, NHFCL 2: 8-10, NHFCL 3: 11-13, NHFCL 4: 14-16, NHFCL 5: 17-19, NHFCL 6: 20-21) as later explanation.

Effect of year was obtained by the method used in Ogura and Shono (1999) that uses Ismean of Year-Area interaction as the following equation.

```
CPUE_i = \Sigma W_i * (exp(lsmean(Year i*Area_i))-constant)
```

```
Where CPUE_i = CPUE in year i,
```

 $W_j = Area rate of Area j$, $(\Sigma W_j = 1)$,

lsmean(Year*Area;j) = least square mean of Year-Area interaction in Year i and Area j,

constant = 10% of overall mean of CPUE.

Time period of standardization was 1960-2009 for both of annual and quarter CPUE.

3. Results and discussion CPUE standardizations by GLM:

The bigeye CPUE (catch in number per 1000 hooks) was standardized by GLM (CPUE-LogNormal error structured model) for each of three area categories, Tropical (Areas 1-5), South (Areas 6 & 7) and All Indian Ocean (Areas 1-7) for three periods 1960-2010 as described in the materials and method section.

Trends of CPUE in each region category (Tropical, South and All Indian Ocean) were shown in Fig. 2 overlaying Nominal CPUE in real scale and relative scale. In the tropical Indian Ocean, CPUE continuously decreased from around 9.3 (real scale) in 1960 to 3.2 in 2002 when it has increased to 4.2 - 4.7 in 2004 through 2008, about the same level as that in the late 1990's. However it has decreased again to about 3.3 in 2009 and 3.1 in 2010. Standardized CPUE in the south area which didn't show clear trend during the period between 1984 and 2000 (CPUE was 3.5 on average), decreased to 2.5 in 2003. It increased to 3.2 in 2004 after when it decreased to 1.3 in 2008 and increased to 1.7 in 2010. As a result, CPUE in all Indian Ocean, which had been kept in the same level around 5 to 7 until 1993 decreased to 3.0 in 2002, increased a little in 2003 and 2004 after when it decreased to about 3.0 in 2008 and 2.5 in 2009 and 2010. Results of ANOVA and distributions of the standard residual in each analysis were shown in Table 1 and Fig. 3, respectively. Distributions of the standard residual did not show remarkable difference from the normal distribution. Annual values of standardized CPUE by region were listed in Appendix Table 1.

Standardized CPUE of each month and each NHFCL by material were compared for tropical and temperate area in Fig. 4 and 5, respectively. In the temperate (south), CPUE was highest in summer (Jun–Aug) and lowest in winter (Nov-Feb). Although the seasonal trend in tropical was not so clear, that in winter was highest in winter and lowest in March. Regarding the combination of NHFCL with non-nylon main line materials, larger NHFCL shows higher CPUE in the South Indian Ocean, while smallest (NHFCL1) and largest (NHFCL 6) classes were rather low in CPUE than other NHFCL 2 – 5 which were about the same level each other in the Tropical Indian Ocean. As for the nylon mainline, CPUE in Tropical Indian Ocean was lowest for NHFCL 2 or 3, while those of other NHFCL (1, and 4-6) are the same level. Nylon material CPUE of South Indian Ocean did not show large difference between NHFCL although highest value was observed for largest NHFCL.

4. Recerences

- Shono, H. and M. Ogura, M. (1999): The standardized skipjack CPUE including the effect of searching devices, of the Japanese distant water pole and line fishery in the Western Central Pacific Ocean. ICCAT-SCRS/99/59. 18p
- Okamoto, H., Miyabe, N., and Matsumoto, T. (2001): GLM analyses for standardization of Japanese longline CPUE for bigeye tuna in the Indian Ocean applying environmental factors. IOTC-2001/TTWP/21, 38p.
- Okamoto, H., Miyabe, N., and Shono, H. (2006): Japanese longline CPUE for bigeye tuna in the Indian Ocean up to 2004 standardized by GLM applying gear material information in the model. IOTC-2006/WPTT/17. 16 pp.
- Okamoto, H. and Shono, H. (2010): Japanese longline CPUE for bigeye tuna in the Indian Ocean up to 2009 standardized by GLM. IOTC-2010/WPTT12/29, 14pp.

Table 1. ANOVA table of GLM for standardization of Annual CPUE.

Tropical			1960-2010 Y	oor boss		
Tropical	DF	Type III SS	Mean Square	F Value	Pr > F	D-Sausro-
Source	344	5283.470	· · · · · · · · · · · · · · · · · · ·	48.270		R-Square=
Model	344	3283.470	15.359	46.270	<.0001	0.364881 CV =
yr	50	601.110	12.022	37.790	<.0001	31.0073
mn	11	114.910	10.446	32.830	<.0001	0110070
area	4	109.683	27.421	86.180	<.0001	
nhfcl	5	38.681	7.736	24.320	<.0001	
sst	1	11.873	11.873	37.320	<.0001	
ml	1	1.763	1.763	5.540	0.0186	
yr*area	199	510.723	2.566	8.070	<.0001	
mn*area	44	174.638	3.969	12.470	<.0001	
area*nhfcl	20	60.309	3.015	9.480	<.0001	
sst*area	4	101.071	25.268	79.420	<.0001	
nhfcl*ml			11.339	35.640	<.0001	
South			1960-2010 Y	ear base		
Source	DF	Type III SS	Mean Square	F Value	Pr > F	R-Square=
Model	140	4962.816	35.449	61.210	<.0001	0.360569
						CV =
yr	50	899.331	17.987	31.060	<.0001	75.69804
mn	11	641.428	58.312	100.680	<.0001	
area	1	40.011	40.011	69.080	<.0001	
nhfcl	5	50.302	10.060	17.370	<.0001	
sst	1	221.571	221.571	382.570	<.0001	
ml	1	1.926	1.926	3.330	0.0682	
yr*area	50	231.563	4.631	8.000	<.0001	
mn*area	11	83.508	7.592	13.110	<.0001	
area*nhfcl	5	27.370	5.474	9.450	<.0001	
nhfcl*ml	5	17.424	3.485	6.020	<.0001	
sst*area						
All Indian Ocean			1960-2010 Y	ear base		
Source	DF	Type III SS	Mean Square	F Value	Pr > F	R-Square=
Model	480	14247.129	29.682	77.320	<.0001	0.456952
						CV =
yr	50	925.618	18.512	48.220	<.0001	39.69301
mn	11	110.241	10.022	26.110	<.0001	
area	6	116.689	19.448	50.660	<.0001	
nhfcl	5	59.572	11.914	31.040	<.0001	
sst	1	4.206	4.206	10.960	0.0009	
_	1	0.266	0.266	0.690	0.4054	
ml		1000 050	4.242	11.050	<.0001	
ml yr*area	299	1268.256	7.272			
	299	685.734	10.390	27.070	<.0001	
yr*area					<.0001 <.0001	
yr*area mn*area	66	685.734	10.390	27.070		

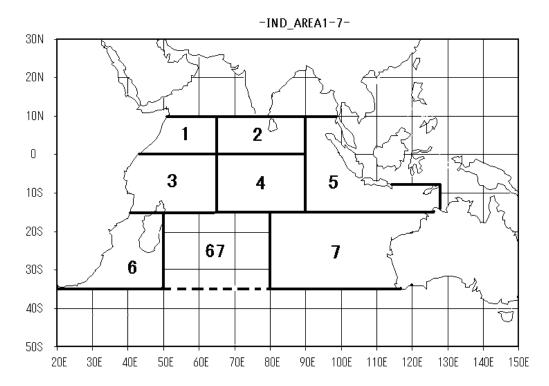


Fig. 1 Definition of sub-areas used in this study. TROPICAL, SOUTH and ALL INDIAN area categories in this paper consist of areas 1-5, areas 6-7 and areas1-7, respectively. Area67 was not used in this study.

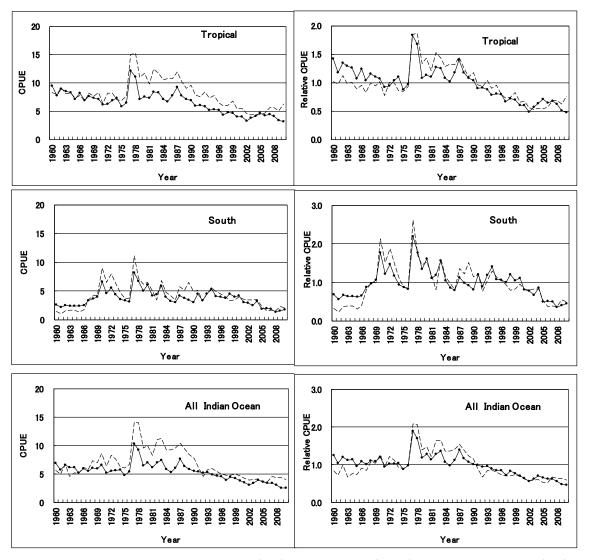


Fig. 2. Standardized CPUEs in real (left) and relative (right) scales for Tropical (top), South (middle) and ALL (bottom) Indian Ocean.

1960-2010

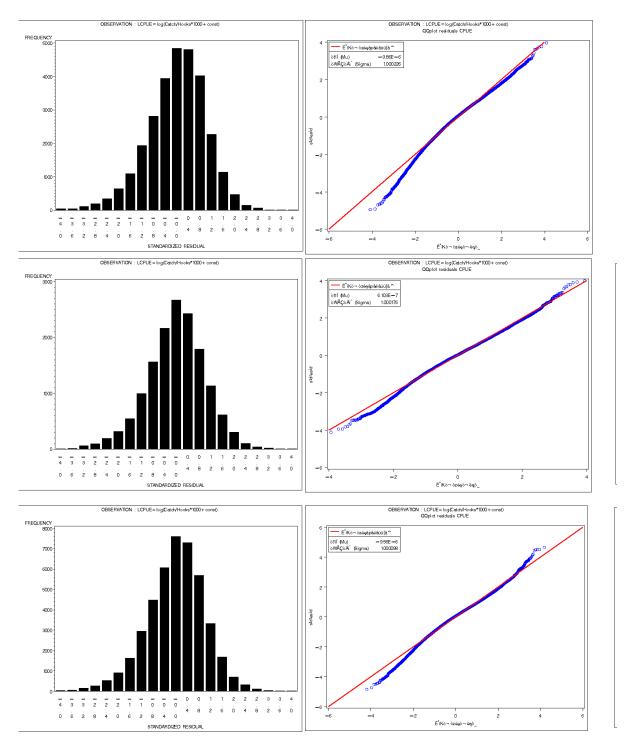


Fig. 3. Standardized residuals of year based standardization for each region expressed as histograms (upper figures) and QQ plots (bottom figures).

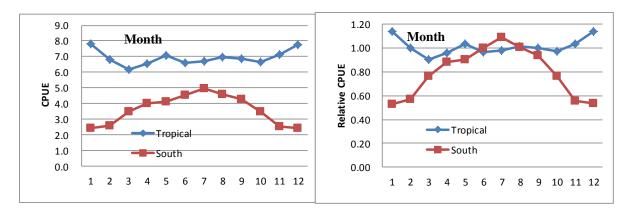


Fig. 4. Standardized CPUE in real scale by month for Tropical and Temperate Indian Ocean. Unit of CPUE is catch in number per 1000 hooks.

Standardized CPUE expressed in real (left) and relative (right) scale by NHFCL and mainline materials for Tropical (top) and South (bottom) Indian Ocean. Unit of CPUE is catch in number per 1000 hooks.

Appendix Table 1. Annual value of standardized Bigeye CPUE in Tropical, South and All Indian Ocean from 1960-2010 expressed in real and relative scale in which the average from 1960 to 2010 is 1.0, with deviation.

Tropical 1960–2010			South 1960-2010				All Indian Ocean 1960–2010				
-			Relative				Relative				Relative
year	CPUE	dev_t	CPUE	year	CPUE	dev_t	CPUE	year	CPUE	dev_t	CPUE
1960	9.4307	0.0013	1.4236	1960	2.5553	0.0091	0.6814	1960	6.8139	0.0015	1.2497
1961	7.7739	0.0014	1.1735	1961	2.1086	0.0066	0.5623	1961	5.6707	0.0013	1.0400
1962	8.9104	0.0010	1.3451	1962	2.4827	0.0056	0.6620	1962	6.5349	0.0011	1.1985
1963	8.5396	0.0012	1.2891	1963	2.4087	0.0052	0.6423	1963	6.0840	0.0011	1.1158
1964	8.3380	0.0012	1.2587	1964	2.3724	0.0052	0.6326	1964	6.1249	0.0011	1.1233
1965	7.1073	0.0010	1.0729	1965	2.3522	0.0046	0.6273	1965	5.1922	0.0009	0.9523
1966	8.2113	0.0009	1.2395	1966	2.4267	0.0051	0.6471	1966	5.9057	0.0010	1.0831
1967	6.8834	0.0009	1.0391	1967	3.2867	0.0032	0.8764	1967	5.5014	0.0008	1.0090
1968	7.6369	0.0012	1.1528	1968	3.6253	0.0035	0.9667	1968	5.9828	0.0009	1.0973
1969	7.3245	0.0010	1.1057	1969	3.9816	0.0041	1.0617	1969	5.9343	0.0009	1.0884
1970	7.0753	0.0013	1.0680	1970	6.6030	0.0045	1.7608	1970	6.5446	0.0011	1.2003
1971	6.1312	0.0011	0.9255	1971	4.5366	0.0044	1.2097	1971	5.1404	0.0010	0.9428
1972	6.2259	0.0016	0.9398	1972	5.5086	0.0081	1.4689	1972	5.5232	0.0016	1.0130
1973	6.8739	0.0017	1.0376	1973	4.3758	0.0067	1.1669	1973	5.5412	0.0015	1.0163
1974	7.3066	0.0015	1.1030	1974	3.4894	0.0047	0.9305	1974	5.6408	0.0012	1.0345
1975	5.8183	0.0012	0.8783	1975	3.2941	0.0045	0.8784	1975	4.7618	0.0010	0.8733
1976	6.4736	0.0022	0.9772	1976	3.0664	0.0112	0.8177	1976	5.3308	0.0021	0.9777
1977	12.1259	0.0028	1.8305	1977	8.2061	0.0171	2.1882	1977	10.2461	0.0030	1.8791
1978	11.1043	0.0013	1.6762	1978	6.6537	0.0065	1.7743	1978	9.2351	0.0013	1.6937
1979	7.1291	0.0030	1.0762	1979	5.0345	0.0063	1.3425	1979	6.4690	0.0021	1.1864
1980	7.5328	0.0017	1.1371	1980	6.0194	0.0060	1.6051	1980	6.9683	0.0014	1.2780
1981	7.2867	0.0010	1.1000	1981	4.1815	0.0045	1.1150	1981	6.1356	0.0010	1.1253
1982	8.4102	8000.0	1.2696	1982	4.4209	0.0073	1.1789	1982	6.9589	0.0011	1.2763
1983	8.2590	0.0010	1.2467	1983	5.8440	0.0056	1.5584	1983	7.4119	0.0011	1.3594
1984	7.1199	0.0012	1.0748	1984	3.9025	0.0036	1.0406	1984	5.8254	0.0010	1.0684
1985	6.7113	0.0010	1.0131	1985	3.2295	0.0038	0.8612	1985	5.3011	0.0009	0.9722
1986	7.7838	0.0007	1.1750	1986	2.9606	0.0052	0.7895	1986	6.0466	0.0009	1.1090
1987	9.2924	8000.0	1.4027	1987	4.1913	0.0045	1.1177	1987	7.5631	0.0009	1.3871
1988	7.7706	0.0010	1.1730	1988	3.6920	0.0071	0.9845	1988	6.3636	0.0012	1.1671
1989	7.1415	0.0011	1.0780	1989	3.4656	0.0072	0.9241	1989	5.7971	0.0012	1.0632
1990	6.8674	0.0010	1.0367	1990	3.0259	0.0048	0.8069	1990	5.4933	0.0010	1.0075
1991	5.9532	0.0012	0.8987	1991	4.5005	0.0023	1.2001	1991	5.3706	0.0009	0.9850
1992	6.0457	0.0017	0.9126	1992	3.3009	0.0036	0.8802	1992	5.1241	0.0012	0.9398
1993	5.8436	0.0012	0.8821	1993	4.4298	0.0023	1.1813	1993	5.2471	0.0009	0.9623
1994	5.1448	0.0010	0.7766	1994	5.2680	0.0013	1.4048	1994	4.8692	0.0007	0.8930
1995	5.3437	8000.0	0.8067	1995	4.0413	0.0009	1.0777	1995	4.5944	0.0006	0.8426
1996	5.2184	0.0006	0.7877	1996	3.9824	0.0010	1.0620	1996	4.5550	0.0005	0.8354
1997	4.3767	0.0004	0.6607	1997	3.7281	0.0012	0.9941	1997	3.9149	0.0004	0.7180
1998	4.7566	0.0005	0.7180	1998	4.5008	0.0022	1.2002	1998	4.4666	0.0005	0.8192
1999	4.6410	0.0005	0.7006	1999	3.9037	0.0020	1.0410	1999	4.1745	0.0005	0.7656
2000	3.9786	0.0004	0.6006	2000	4.1282	0.0015	1.1008	2000	3.8115	0.0004	0.6990
2001	3.9803	0.0006	0.6008	2001	3.0361	0.0011	0.8096	2001	3.4636	0.0005	0.6352
2002	3.2193	0.0005	0.4860	2002	2.9043	0.0013	0.7745	2002	2.9984	0.0004	0.5499
2003	3.7922	0.0011	0.5724	2003	2.5239	0.0027	0.6730	2003	3.3598	0.0009	0.6162
2004	4.1657	0.0007	0.6288	2004	3.2290	0.0029	0.8611	2004	3.8455	0.0007	0.7053
2005	4.6680	0.0013	0.7047	2005	1.8516	0.0031	0.4937	2005	3.5768	0.0010	0.6560
2006	4.2703	0.0005	0.6446	2006	1.9420	0.0028	0.5178	2006	3.3428	0.0006	0.6131
2007	4.4645	0.0004	0.6739	2007	1.8594	0.0027	0.4958	2007	3.3871	0.0005	0.6212
2008	4.1428	0.0004	0.6254	2008	1.3225	0.0019	0.3527	2008	3.0293	0.0005	0.5556

2009

2010

1.5076

1.6890

2009

2010

3.3174

3.1315

0.0006

0.0011

0.5008

0.4727

0.4666

0.4627

0.0022

0.0020

0.4020

0.4504

2009

2010

2.5443

2.5229

0.0006

0.0009