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Abstract 

The Brownie-Petersen method for estimating mortality rates and abundance was 
applied to yellowfin tuna (Thunnus albacores) tag-recapture data and catch data from 
the Indian Ocean in years 2005 to 2007. The results presented are for a model with a 
half-yearly time-step and a single fishery (i.e., tag returns and catches were 
aggregated across fisheries within each time period). Several alternative scenarios 
were considered and the results could vary significantly between them, particularly 
when different growth curves were used to age the data. However, overall, the results 
suggest: natural mortality between ages 0 and 1 years is high but then declines 
rapidly; fishing mortality rates vary significantly between years and ages, but were 
highest for age classes 1, 1.5 and 2 years; and abundance has declined over time. 
When interpreting the results, it is important to note that a large number of 
uncertainties exist in the data and the model assumptions, as discussed in the paper. 
The results presented can only be considered preliminary until some of these issues 
have been resolved and further sensitivity runs have been conducted.   

Introduction 

The Brownie-Petersen (BP) method, presented in Polacheck et al. (2006), is a method 
for estimating natural mortality rates, fishing mortality rates and abundance from 
multi-year tagging data integrated with catch data. The inclusion of catch data not 
only improves estimation of mortality rates (especially fishing mortality) but also 
allows for direct estimation of cohort size at the time of tagging. This method 
provides a potentially powerful alternative to CPUE and fishery-independent surveys 
for augmenting traditional stock assessments.  
 
In this paper, we apply the BP method to Indian Ocean yellowfin tuna (YFT) tag-
recapture and catch data. As part of a large-scale conventional tagging program, 
referred to as the Regional Tuna Tagging Project - Indian Ocean (RTTP-IO), large 
numbers of YFT (as well as skipjack (SKJ) and bigeye (BET)) were tagged between 
October 2005 and August 2007.  Tagging occurred in the western Indian Ocean, 
primarily off Tanzania. Details of the RTTP-IO tagging operations can be found in 
Hallier (2008). Additional tagging has also occurred in the eastern Indian Ocean as 
part of small-scale tagging operations, including extensive tagging of YFT and SKJ 
off the Maldives in 2004 and 2007-2009. In total, over 63 000 YFT have been tagged 
since 2004. Recaptures have occurred in the commercial fisheries operating in the 
Indian Ocean, with returns coming primarily from the purse seine fishery. The low 
number of returns from other fisheries is partly due to lower catch numbers, 
particularly of the smaller size classes that were tagged, but probably due in most-part 
to non-reporting.  To date, the percent of tag returns for YFT is approximately 16%. 
These data have the potential to provide valuable information for assessing the stock.  
 
The stock assessment for Indian Ocean YFT that was conducted in 2011 using 
MULTIFAN-CL (Langley et al. 2011) suggests that total biomass has declined 
rapidly since the 1980s, and that recruitment in recent years has been low, particularly 
during 2003-2006. Recent (2006-2009) exploitation rates are also estimated to be at 
historically high levels. Nevertheless, for most model runs except those assuming the 
lowest productivity (steepness), the current exploitation rates were still estimated to 
be below the MSY-based reference level.   
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The declining trend in abundance and recruitment estimates has led to concern about 
the status of the Indian Ocean YFT stock. As such, it is valuable to have independent 
estimates of mortality rates and abundance from the BP analysis to compare with the 
stock assessment estimates. Although the MULTIFAN-CL stock assessment 
incorporates tag-recapture data, the likelihood for the tagging does not keep track of 
multiple releases of the same cohort, and therefore does not fully exploit the 
information content in the tagging data on natural morality. Furthermore, integrated 
stock assessment models such as MULTIFAN-CL attempt to estimate the entire age 
structure and history of a population since the beginning of exploitation. The models 
are over-parameterized and various assumptions and penalty terms, particularly with 
respect to catchability and selectivity, are required to yield an identifiable set of 
parameters.  On the other hand, the BP model allows for all parameters to be 
estimated without requiring any assumptions about selectivity and catchability. As a 
result, the model can be used to test a suite of assumptions with regard to the 
parameters, such as whether fishing mortality can adequately be described using a 
selectivity function or whether certain parameters are common between ages or years.  
Of course, a disadvantage is that estimates are only possible for cohorts and ages for 
which tagging data are available. Thus, the BP model should be viewed as being 
complementary to the stock assessment model.   
 
Another potential advantage of the BP model over traditional stock assessment 
models is that it does not rely on the use of catch per unit effort (CPUE) data.  CPUE 
data from the longline fisheries form the principal index of stock abundance in the 
MULTIFAN-CL assessment for YFT in the Indian Ocean (Langley et al. 2011), but 
are also one of the more uncertain and unreliable components. Tagging data provide a 
useful alternative to CPUE data, and are perhaps the only viable alternative in 
fisheries, such as that for Indian Ocean YFT, where fishery-independent surveys are 
not possible. 
 

Methods 

The BP method is presented in detail in Polacheck et al. (2006), but the relevant 
information is reproduced here for convenient reference. Modifications that were used 
in the application to the YFT data are also described. Note that the model is presented 
in terms of an annual time-step; however, it is simply a matter of replacing year with 
‘time period’ for a model with a different time-step (such as quarterly or half-yearly).  

Population dynamics model 

The basic model underlying the analyses of the multi-year tagging experiments used 
here is the general population dynamic equations commonly used in fisheries. These 
equations involve exponential and competing natural and fishing mortality rates. Thus 
for a cohort of animals of a given age, the number that survive one time step is 
 
 , 1 , , ,exp{ }i t i t i t i tP = P F M+ − −  (1) 
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where:   

Pi,t = the number of individuals of age i at time t 
Ci,t = the catch of individuals of age i at time t 
Fi,t = the instantaneous fishing mortality rate for individuals of age i at time t  
Mi,t = the instantaneous natural mortality rate for individuals of age i at time t. 

 
In most fisheries contexts, Mi,t will be assumed to be constant with time, although 
multi-year and multi-cohort tagging programs can provide year and age specific 
natural mortality rates. Here, we focus on a multi-year tagging experiment involving a 
single cohort. As such, we will drop the t subscript and express everything in terms of 
age.  
 
Note that the model and equations are presented in terms of a single cohort as this is 
the minimum required by the model and makes the notation simpler. In practice, it is 
likely that several cohorts (age-classes) would be tagged in each time period of 
tagging. To include multiple cohorts in the model, one simply needs to develop the 
likelihood for each cohort as described in the next section, and then multiply them 
together to form a joint likelihood. Note that if all parameters being estimated vary 
with both year and age, then maximizing the likelihood for each cohort separately is 
equivalent to maximizing the joint likelihood (i.e., will yield the same parameter 
estimates). More likely, however, some parameters will be shared; for example, if 
natural mortality varies with age but not with year, then all fish recaptured at a given 
age will have a common M parameter regardless of the year. 
 
In the context of a tagging experiment, the above equations provide the basis for 
predicting the expected number of returns assuming that the tagged fish constitute a 
representative sample of the population. Following Brownie et al. (1985), the 
expected number of tags recaptured and returned from a particular cohort at age i 
from releases at age a (Ra, i) are given by the expressions in Table 1.  
 
 
Table 1.  Expressions for the expected number of tag returns by age corresponding to 
releases at a particular age, for a tagging experiment in which a cohort of fish is 
tagged at ages 1 to 3 and recaptured at ages 1 to 5.  
 
Release 
Age 

# 
Releases 

Expected # returns from age class i 
1 2 3 4 5 

1 N1 λ1N1f1 λ2N1S1f2 λ3N1S1S2f3 λ4N1S1S2S3f4 λ5N1S1S2S3S4f5 
2 N2  λ2N2f2 λ3N2S2f3 λ4N2S2S3f4 λ5N2S2S3S4f5 
3 N3   λ3N3f3 λ4N3S3f4 λ5N3S3S4f5 
 
 
where: 
 Na= the number of tag releases of age a fish from a specific cohort 

fi = Fi/(Mi+Fi)∗[1 - exp{-(Mi+Fi)}] 
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Si = exp{-(Mi+Fi)} 
λi= tag reporting rate for fish captured at age i.  

 
The above expressions for the expected number of returns assume complete and 
instantaneous mixing of tagged fish and no tagging mortality or loss. In our 
application to the YFT data, we modify the equations to incorporate tag shedding as 
follows: 
 

fi = α Fi/(Mi+Fi+Ω)∗[1 - exp{-(Mi+Fi+Ω)}] 
Si = exp{-(Mi+Fi+Ω)} 

 
where α is the instantaneous retention rate (i.e., the proportion of tags that are not 
shed immediately after tagging) and Ω is the continuous shedding rate (i.e., the rate at 
which tags shed over time).  
 
Note that these modified equations pertain to single-tagged fish, but for simplicity we 
assume here that they hold for double-tagged fish as well. In actuality, the probability 
of a fish retaining (at least) one tag will be greater for a double-tagged fish than a 
single-tagged fish; however, for YFT, the shedding rate estimates are low enough 
(see ‘Data and assumptions’ section below) that we assume the difference can be 
ignored.   
 
We also want to account for the fact that newly tagged fish will not be fully mixed 
with the untagged population immediately after tagging, and for the fact that tagging 
generally occurs during the fishing season so tagged fish are only vulnerable for part 
of the season. To do so, we allow the F parameters to differ between tagged and 
untagged fish in one or more time periods after tagging (see application to southern 
bluefin tuna in Polacheck et al. 2006).  
 
Equations (1) and (2) can also be used to provide analogous expressions for the 
expected catches of age i fish from a particular cohort, conditional on the size of the 
cohort at the age of first tagging, assumed here to be age 1 and denoted by 1P  (Table 
2).  
 
Table 2. Expressions for the expected number of fish caught at ages 1 to 5 from a 
cohort which had an age 1 abundance of 1P . 
 
Size of 
cohort 

Expected catch from age class i 
1 2 3 4 5 

P1 P1f1 P1S1f2 P1S1S2f3 P1S1S2S3f4 P1S1S2S3S4f5 
 
Essentially, the catch data can be viewed as a tagging experiment in which the 
number of releases (P1) is unknown and is a parameter to be estimated. However, 
unlike a tagging experiment where there is little uncertainty in the numbers of tags 
returned1, the numbers of fish caught at each age will be estimated quantities. These 

                                                 
1 The numbers of tags recaptured can have high uncertainty due to uncertain reporting rates, but the 
numbers of tags actually returned (i.e., the data that enters the model) are usually known accurately.  
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quantities are usually derived from a multi-stage sampling of catches for length 
combined with age-length keys derived from otoliths, or obtained via cohort slicing. 
Because P1 is unknown, it is not possible to derive estimates of mortality rates from 
the catch at age data alone2. However, combining the catch at age data with the multi-
year tagging data allows P1 to be estimated and additional information on F and M 
contained in the catch data to be extracted. 
 

Estimation Model 

As developed in Brownie et al. (1985), if each tag recapture is assumed to be 
independent, then the numbers of returns at age corresponding to a given release event 
are expected to be multinomial. The likelihood function for the observed numbers of 
returns from all release events is the product of multinomials: 
 

 , ,
, ,

, ,

!
(1 )

! ( )!
a i a aa

R a i a
a i aa i a a

i a

R N RN
L p p

R N R
•

•
≥•

≥

−
 
 = − − 
 

∏ ∏∏
 (3) 

 
where a indexes release age, i indexes recapture age, and  pa,i  is the probability of a 
tag being returned from an age i fish released at age a.  An expression for  pa,i  can be 
obtained from the expected number of returns in Table 1 by dividing by Ni.  
Explicitly, 
  

 ,
1

i i
a i

i a i i

f i a
p

S S f i a

λ
λ −

=
=  > L

 

 
Note that in equation (3) and in subsequent equations, a dot in the subscript denotes 
summation over the index it replaces. 
 
Variance in the tag return numbers may be greater than a multinomial distribution 
predicts (due to factors such as tagged fish remaining in schools). Overdispersion (i.e., 
extra variability) can be accounted for by using a Dirichlet-multinomial distribution, 
but this requires specifying the level of overdispersion since it cannot be reliably 
estimated within the model. Assuming a multinomial distribution, as we have done in 
the analyses presented here, should not bias the parameter estimates; however, it 
means that their estimated standard errors will be too small if that return data are in 
fact overdispersed (Polacheck et al. 2006).  
 
Similar to the tag-return data, if we assume that all fish in a cohort are independent, 
then the catch at age data can be modelled as random multinomial, where each fish 
has a probability of being captured at age i.  Expressions for the catch probabilities 
can be obtained by dividing the expected catches in Table 2 by the initial cohort size,

1P .   
 
                                                 
2 Even if M is assumed known as in many stock assessments, there are still too many parameters and 
this is the reason that catch at age stock assessment models require additional sources of data. 
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The age distribution of the catch is usually determined by taking a sample of the 
catch, estimating the ages of fish in the sample (either from lengths or from direct 
aging of hard parts), and then scaling up the estimated age frequencies of the sample 
by the ratio of the catch size to the sample size. We have chosen to represent the error 
in the catch at age data that results from this estimation procedure as Gaussian with a 
common coefficient of variation (CV), υ , across all age classes. To fit a model with 
both multinomial “process” error and Gaussian sampling/measurement error would 
require a relatively sophisticated approach, such as a Kalman filter.  However, in most 
fisheries the number of fish in the cohort from which catches are being taken will be 
very large such that the multinomial error will be negligible compared to the Gaussian 
sampling error (see Polacheck et al. 2006). In such cases, only the latter needs to be 
considered.  Thus, the likelihood for the catch at age data can be expressed as 
 

 
2

( )1 1exp
22

i i
C

i ii

C E C
L

σπσ

  −
 = −     

∏  (4) 

 
where the expected catch at age i, ( )iE C , is given in Table 2 and ( )i iE Cσ υ= . 
 
The overall likelihood for the combined recapture and catch data can be obtained by 
multiplying likelihoods (3) and (4) together: 
 
 R CL L L= ×  (5) 
 
Estimates of the F, M and P parameters can be obtained by maximizing the likelihood 
in (5) (or, equivalently, by minimizing the negative log of this likelihood).  The 
parameter υ  cannot be estimated from the data when a separate F is estimated for 
each year of recapture, thus we assume that it is known. 
 
The information for estimating Mi comes from the differential between the expected 
returns at age 1i +  of fish released at age i and those released at age 1i + .  Thus, in an 
experiment with n release events, estimates can only be obtained for Mi to Mn−1 
because subsequent M’s are not separable from the corresponding F parameters.  In an 
experiment with three release events, as illustrated in Table 1, only M1 and M2 are 
estimable.  Therefore we assume that 1i nM M −=  for i n≥ .   

Data and assumptions  

After considering annual, half-yearly and quarterly time-steps, a half-yearly time-step 
was decided upon. This seemed to provide a fine enough scale not to blur the 
differences in mortality rates at the young age classes, but broad enough that the tag 
and recapture sample sizes were sufficient for most time periods and age classes.  
 
Only YFT tag-recapture data from the RTTP-IO were used here (database version 
2012-09-21); data from the small-scale tagging projects were not included because 
there is greater uncertainty in their reliability. Furthermore, only returns from the 
purse seine (PS) fishery were included since return rates from the other fisheries are 
very low and reporting rate estimates are either not available or much less certain than 
those for the PS fishery. A screening criteria was applied to the RTTP-IO releases to 
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ensure only reliable data were included. Specifically, releases were only included 
where: species identification was considered reliable (i.e., TAG_SpRel=1 in the IOTC 
tag database), the fish was in good condition after tagging (TAG_FishRel=1), the tag 
(or at least one tag in the case of double tagging) was inserted well (TAG_Tag1Rel=1 
or TAG_Tag2Rel=1), fish length (needed to estimate age) was measured reliably 
(TAG_LengthRel=1). All recaptures corresponding to these releases were included, 
even though the date of recapture (used to estimate recapture age) may not be 
considered reliable; we cannot exclude recaptures without accounting for them in 
some way or we would bias the results. Figure 1 shows the locations of YFT releases 
and recaptures that were available for analysis after the above criteria were applied.  
  
 
Figure 1. Release and recapture locations of YFT considered suitable for the 
Brownie-Petersen analysis. Only RTTP-IO releases and purse seine recaptures are 
included.  

 
 
 
 
One of the key assumptions of the BP model is that tagged fish are fully mixed with 
the population of untagged fish within a specified time period after release.  Langley 
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and Million (2012) investigated this issue to determine an appropriate mixing period 
for use in the YFT stock assessment and recommended that a mixing period of 3 
quarters (9 months) be used; sensitivity of the stock assessment results to the mixing 
period was also investigated (Langley 2012). Using this recommendation as a guide 
for the half-yearly BP model, we used a mixing period of 6 months (1 time period) as 
the default, but also conducted a sensitivity run using a mixing period of 12 months (2 
time periods).  
 
A comparison of return rates from RTTP-IO releases from different areas shows that a 
large percent (~10%) of the Kenya and Madagascar releases were returned in the first 
90 days (Table 3). However, if we exclude returns in the first 90 days, then ~14% of 
the Kenya, Seychelles and Tanzania releases, and ~10% of the Madagascar and 
international releases, are returned in the PS fishery (Table 3). In comparison, only 
1.1% of the 2748 Oman releases were returned in the PS fishery. Even if half the fish 
tagged off Oman were caught in other fisheries but not reported, this would still mean 
only 2% returns from the PS fishery. The reason for such a low return rate from the 
Oman releases is unclear and needs further investigation. For now, we fit the BP 
models both with and without the Oman releases to assess the sensitivity of the results 
to these releases.       
 
 
Table 3. Number of releases by country of release and (i) percent returns within 90 
days at liberty and (ii) total percent returns.   
INT=international, KEN=Kenya, MAD=Madagascar,OMA=Oman, SEY=Seychelles, 
TAN=Tanzania. (Only countries with>100 releases are included.) 
 
Release Number Percent returns 

country releases ≤90 days >90 days 

INT 316 1.9 10.8 

KEN 803 9.5 14.0 

MAD 393 11.7 11.0 

OMA 2748 0.0 1.1 

SEY 3093 1.5 14.2 

TAN 43770 3.4 14.7 

 
  
The YFT catch data used here were compiled by the IOTC Secretariat for the 
MULTIFAN-CL stock assessment, and are broken down by year, quarter, fishery and 
assessment area3. In each year-quarter-fishery combination that had length 
information, the sample length-frequency data was scaled up to the total catch in that 
year, quarter and fishery. For a year-quarter-fishery combination that did not have any 
length information, the length-frequency data for that fishery from adjacent years 
(usually ±1 year was adequate, but up to ±5 years was necessary in some cases) were 
combined to calculate a length-frequency distribution4, which was then scaled up to 

                                                 
3 The analyses presented here did not make use of the spatial information, but in future it would be 
worth exploring spatial applications of the Brownie-Petersen model to the YFT data (see Discussion).    
4 The troll fishery has almost no length information, so length-frequency information from the longline 
fishery was used (i.e., for a given year-area-quarter, the length-frequency distribution for the troll 
fishery was assumed to be the same as for the longline fishery).   
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the total catch for that year, quarter and fishery. Catch data are not essential to the 
model; without these data the model becomes a Brownie model and abundance can no 
longer be estimated (only natural mortality and fishing mortality). Catch data, and 
especially length information, for much of the Indian Ocean YFT catches are not 
reliable; thus we ran the models with and without catch data to see the sensitivity of 
the results and to check for consistency between the catch and tag-recapture datasets.      
 
The release data and the catch data were aged based on length using an assumed 
growth curve and a simple ‘cohort slicing’ method (i.e., fish with lengths between 
L(a1) and L(a2) are considered to be age a1, where L(a) is the expected length at age a 
calculated from the growth curve). The growth curve we used was taken from Eveson 
et al. (2012), in which a VB log k model (von Bertalanffy with a logistic growth rate 
parameter) was fit to the most recent tag-recapture and otolith data for YFT. Several 
variations of the VB log k model were presented (see Figure Y7 of Eveson et al. 
2012); however, we have chosen to use the model in which the otolith data were 
highly weighted (wt=100) and the mean asymptotic length parameter was fixed at 
145cm as our default (Figure 2, dashed blue line). As a sensitivity run, we also used 
the VB log k growth curve with the mean asymptotic length parameter fixed at 
145cm, but the otolith data not weighted (wt=1) (Figure 2, solid green line).  
  
 
Figure 2.  The VB log k growth curves used for ageing the YFT release length data 
and catch-at-length data.   
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recapture data (Table 4a) are broken down by cohort and age of release, and age at 
recapture. Our convention is to refer to the lower bound of each time period and age 
class, so time period 2004.0 refers to 2004 months 1-6 and 2004.5 refers to 2004 
months 7-12, and age class 0.5 refers to 0.5-1 yrs old and 1.0 refers to 1-1.5 yrs old. 
The BP method requires a cohort to be tagged in multiple consecutive time periods in 
order to separate M from F, so only cohorts 2003.5 to 2006.5 had sufficient data to be 
included in the analysis. Almost all fish (>99%) were tagged at ages 0.5 to 2.5, so 
only these release ages were included in the model. Also, the numbers of recaptures 
beyond age 5.5 are too small to be informative, so only recaptures at ages 0.5 to 5.5 
are included. Note that each cohort was not tagged at all release ages (e.g., cohort 
2003.5 was not tagged at ages 0.5 or 1.0 since this was before the RTTP-IO began), 
but this is not a problem for the model to deal with. The catch data (Table 4b) are 
broken down by cohort and age. Release age and age of the catch were estimated 
using the default VB log k growth curve described above (i.e., the blue dashed line in 
Figure 2). Recapture age was calculated from the estimated release age plus the time 
at liberty. Cohort was calculated as time period (of tagging or catch) minus estimated 
age.   
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Table 4.  YFT data used in the Brownie-Petersen model with a half-yearly time-step. (a) Number of tag releases by cohort and release age, and 
corresponding number of tag returns by age. Only RTTP-IO releases and returns from the purse seine fishery are included. (b) Catch numbers (in 
millions) by cohort and age. Age was estimated from length using the default VB log k growth curve (dashed blue line in Figure 2). Cohort 
200x.0 refers to fish born in year 200x months 1-6, cohort 200x.5 refers to fish born in year 200x months 7-12.  Age gives the lower bound of 
the half-yearly age class (e.g., age 0.5 refers to fish of ages 0.5 to 1 years).      
 
(a) Release-recapture data 

 

Release Release Number Number returns by age  Total Percent 

Cohort age year releases 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0+ returns returns 

2003.5 1.5 2005 370 0 0 37 1 6 11 6 3 3 0 1 2 70 18.9 

2003.5 2.0 2005 543 0 0 0 0 8 20 11 9 4 2 0 1 55 10.1 

2003.5 2.5 2006 784 0 0 0 0 20 28 28 9 14 2 1 1 103 13.1 

2004.0 1.0 2005 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

2004.0 1.5 2005 2806 0 0 10 60 66 39 45 14 4 2 3 3 246 8.8 

2004.0 2.0 2006 1056 0 0 0 20 49 28 14 22 4 1 1 0 139 13.2 

2004.5 0.5 2005 6 0 1 0 0 0 0 0 0 0 0 0 0 1 16.7 

2004.5 1.0 2005 1083 0 5 42 19 28 23 17 6 2 0 1 1 144 13.3 

2004.5 1.5 2006 10546 0 0 110 624 445 304 220 103 60 25 19 12 1922 18.2 

2004.5 2.0 2006 1499 0 0 0 64 141 68 40 14 7 2 3 4 343 22.9 

2004.5 2.5 2007 826 0 0 0 0 2 6 3 1 2 0 0 1 15 1.8 

2005.0 0.5 2005 4 0 0 0 1 0 0 0 0 0 0 0 0 1 25.0 

2005.0 1.0 2006 2199 0 37 233 54 21 12 10 5 2 4 0 1 379 17.2 

2005.0 1.5 2006 7551 0 0 310 403 232 170 88 32 26 12 2 9 1284 17.0 

2005.0 2.0 2007 1403 0 0 0 4 29 2 1 1 0 0 0 0 37 2.6 

2005.0 2.5 2007 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

2005.5 0.5 2006 975 8 64 10 0 4 1 0 0 0 0 0 0 87 8.9 

2005.5 1.0 2006 9544 0 395 820 382 175 114 60 63 23 12 16 17 2077 21.8 

2005.5 1.5 2007 1196 0 0 0 159 36 18 7 14 4 3 0 4 245 20.5 
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2005.5 2.0 2007 379 0 0 0 33 19 20 7 3 3 0 1 0 86 22.7 

2006.0 0.5 2006 37 2 8 1 1 0 0 0 0 0 0 0 0 12 32.4 

2006.0 1.0 2007 223 0 2 28 6 1 0 1 1 0 0 1 0 40 17.9 

2006.0 1.5 2007 4819 0 0 290 165 116 58 59 32 10 6 6 11 753 15.6 

2006.5 0.5 2007 327 0 35 8 2 2 3 1 1 0 0 0 0 52 15.9 

2006.5 1.0 2007 1792 0 154 123 11 12 13 11 2 2 0 0 0 328 18.3 

 
 
(b) Catch data (in millions) 
  

 

Number caught by age  

Cohort 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

2003.5 0.91 7.32 2.74 1.24 1.11 1.11 0.89 0.29 0.32 0.11 0.08 

2004.0 1.69 2.89 3.94 2.38 0.96 1.14 0.58 0.55 0.19 0.11 0.09 

2004.5 0.50 5.98 1.75 1.59 1.09 0.85 0.85 0.33 0.21 0.13 0.12 

2005.0 1.60 2.14 6.74 0.93 0.73 0.97 0.52 0.37 0.22 0.17 0.10 

2005.5 0.29 8.20 1.33 0.92 0.76 0.60 0.61 0.43 0.28 0.14 0.13 

2006.0 1.53 3.05 2.25 0.82 0.36 0.80 0.63 0.51 0.26 0.16 0.10 

2006.5 1.13 5.49 1.94 0.91 0.91 0.73 0.73 0.45 0.25 0.15 

 



IOTC–2012–WPTT14–32  
 

 13 

 
 
Reporting rates are required for each time period and age of tag returns being included 
in the model. Although reporting of a tag is not expected to depend on the age of a 
fish, it is still necessary to estimate age-specific reporting rates in situations where 
there are multiple fisheries with different selectivities, implying different age-
structures in the catches (Hearn et al. 1999). An average reporting rate across all 
fisheries is calculated for time period t and age a by taking a weighted average of the 
fishery-specific reporting rates, where the weights are the proportion of the catches in 
time period t belonging to age class a in each fishery. Reporting rates have been 
estimated from tag seeding data for the PS catches unloaded in the Seychelles (this 
includes both log-set and free-school catches). Estimates by year and quarter for 2004 
to 2009 were provided by the IOTC Secretariat; they were not yet updated to include 
2010 and 2011 at the time of the BP analysis so we assumed the reporting rates for 
these years were equal to the 2009 estimates from the same quarter. Reporting rates 
for the “at sea” PS catches are assumed to be 100%. For all other fisheries, the 
reporting rates are assumed to be 0% (recall that the relatively small numbers of tag 
returns from these fisheries have been excluded from analysis5). Table 5 shows the 
reporting rate estimates (averaged over all fisheries) that were calculated using half-
yearly time periods. Note that the small values for some time periods and ages are due 
to the fact that the fisheries assigned a 0% reporting rate catch a large portion of the 
total catch for that time period and age.   
 
 
Table 5. Reporting rate estimates (averaged over all fisheries) by cohort and age of 
recapture. See text for details.  

 

Age 

Cohort 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

2003.5 0.17 0.32 0.28 0.09 0.23 0.42 0.42 0.35 0.36 0.22 0.20 

2004.0 0.38 0.33 0.39 0.14 0.32 0.31 0.40 0.39 0.26 0.25 0.13 

2004.5 0.18 0.33 0.39 0.16 0.32 0.40 0.37 0.29 0.27 0.16 0.06 

2005.0 0.25 0.51 0.60 0.11 0.21 0.29 0.33 0.28 0.18 0.08 0.09 

2005.5 0.31 0.69 0.40 0.33 0.38 0.31 0.23 0.17 0.09 0.12 

 2006.0 0.57 0.38 0.56 0.08 0.24 0.10 0.19 0.09 0.16 

  2006.5 0.14 0.49 0.35 0.28 0.13 0.19 0.11 0.22 

    
 
Tag shedding estimates were provided by the IOTC Secretariat; they were obtained by 
an update of the analysis in Gaertner and Hallier (2009). A constant rate shedding 
model, Q(t) = α exp(-Ωt), was found to give the best fit, with parameter values 
estimated to be α=0.977 and Ω=0.039 (per year). Note that Q(t) is the probability of a 
tag being retained after time t, α is the proportion of tags that are retained 
immediately after tagging, and Ω is the rate at which tags shed over time.  
 

                                                 
5 The Maldives pole and line fishery does return some tags; however, in the absence of any information 
on reporting rates, it is simplest to omit these returns from the analysis and assume a 0% reporting rate 
for this fishery.  
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Recall that the CV of the catch data needs to be specified. A value of 0.3 was used 
here; although this value was chosen rather arbitrarily, previous investigations have 
shown the results to be fairly insensitive to the value used (Eveson et al. 2007). 
 
In fitting all BP models presented here, we allowed M to vary with age but not across 
time periods, and F to vary with both age and time period (with no assumptions about 
selectivity patterns). Because we are assuming a single fishery, this means we 
estimate a total F for each time period and age (i.e., we do not estimate fishery-
specific Fs).  

Results 

The results obtained from the “base” BP model run (using the default growth curve, 
including the Oman releases, including catch data and assuming a mixing period of 6 
months) are presented in Table 6 and Figure 3.  M is estimated to be very high at age 
0.5 (~1.0 per half year so 2.0 per year) and then declines rapidly to essentially 0 by 
age 2.0.   The F estimates for a given age can differ a lot between cohorts (i.e., time 
periods); for example, the age 2.0 F estimate was >0.45 for cohorts 2004.5 to 2006.0 
(time periods 2006.5 to 2008.0), but was only 0.11 and 0.20 for cohorts 2003.5 and 
2004.0 (time periods 2005.5 and 2006.0) respectively. Generally, the F estimates for 
ages 1.0 to 2.0 are higher than for other ages. The abundance estimates obtained from 
the model correspond to the size of the cohort at the age when it was first tagged so 
they are not all directly comparable. For example, the estimate for cohort 2003.5 of 
51.0 million is for age 1.5 whereas the estimate for cohort 2004.5 of 60.2 million is 
for age 0.5. Abundance estimates for ages beyond the age of tagging can be derived 
using the estimates of F and M, and make direct comparison between cohorts easier 
(see Figure 3c); in particular, it can be seen that the 2003.5 and 2004.0 cohorts are 
estimated to have been largest.    
 
Results from 4 alternative model runs are also plotted: (1) using the alternative growth 
curve (Figure 4); (2) excluding the Oman releases (Figure 5); (3) excluding catch data 
(Figure 6); and (4) using a mixing period of 12 months (Figure 7). The results are 
most sensitive to using the alternative growth curve. This is not surprising because it 
changes the ages to which many of the fish are assigned; in particular, fish under 
50cm tend to get assign to a younger age class. Many fish end up being assigned age 
0, which we did not have using the default growth curve.  As a result, the M estimate 
is very high at age 0 as opposed to age 0.5 (almost 1.5 per half year), but then close to 
zero at subsequent ages (with the exception of a small but strange spike at age 1.0). 
The F estimates using the alternative growth curve are for the most part substantially 
lower, and the population size estimates much higher (note the larger range for the y-
axis).      
 
For the other alternatives, the M estimates are all quite similar to the base run, as are 
the population size estimates. In terms of the F estimates, they relatively insensitive to 
excluding catch data and to using a longer mixing period; however, there are some 
notable differences when the Oman releases are omitted.  In particular, the F 
estimates for larger fish (ages 2.5 and above) are quite a bit higher. This is expected 
because the percent returns from the Oman releases, which were larger fish, was very 
low and, therefore, including these releases brings the overall estimate of fishing 
mortality down.    
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Table 6. Parameter estimates from the base model run: natural mortality rate (M) estimates by age, fishing mortality rate (F) estimates by cohort 
and age, and abundance at age of first tagging (P) by cohort (in millions).  
 
M 

 

Age 0.5 1.0 1.5 2.0+ 

       

  

1.05 0.35 0.00 0.00 

       

             F Cohort Age 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

 

2003.5 

  

0.22 0.11 0.11 0.12 0.11 0.06 0.07 0.02 0.01 

 

2004.0 

 

0.12 0.23 0.20 0.13 0.10 0.07 0.05 0.02 0.01 0.01 

 

2004.5 0.01 0.39 0.17 0.46 0.30 0.19 0.18 0.12 0.09 0.06 0.13 

 

2005.0 0.03 0.09 0.34 0.58 0.29 0.19 0.11 0.07 0.07 0.08 0.03 

 

2005.5 0.01 0.57 0.43 0.43 0.21 0.22 0.21 0.35 0.35 0.18 0.00 

 

2006.0 0.05 0.51 0.39 0.69 0.27 0.49 0.52 1.29 2.41 0.00 0.00 

 

2006.5 0.03 0.64 0.48 0.13 0.24 0.25 0.38 0.21 0.00 0.00 0.00 

             P Cohort: 2003.5 2004.0 2004.5 2005.0 2005.5 2006.0 2006.5 

    

 

Age: 1.5 1.0 0.5 0.5 0.5 0.5 0.5 

    

  

51.0 79.8 60.2 81.9 54.6 51.2 62.2 
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Figure 3. Parameter estimates from the base model along with ± 1 standard error bars.  (a) Natural mortality rate (M) estimates by age; (b) 
fishing mortality rate (F) estimates by cohort and age; and (c) abundance (P) by cohort (note that only P at the first age tagged is estimated 
directly in the model; subsequent age estimates are derived from the estimates of F and M). 
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(b) Fishing mortality 
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(c) Population size 
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Figure 4. Parameter estimates from the model using the alternative growth curve along with ± 1 standard error bars.  (a) Natural mortality rate 
(M) estimates by age; (b) fishing mortality rate (F) estimates by cohort and age; and (c) abundance (P) by cohort (note that only P at the first age 
tagged is estimated directly in the model; subsequent age estimates are derived from the estimates of F and M).. 
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(b) Fishing mortality 
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(c) Population size 
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Figure 5. Parameter estimates from the model omitting Oman releases along with ± 1 standard error bars.  (a) Natural mortality rate (M) 
estimates by age; (b) fishing mortality rate (F) estimates by cohort and age; and (c) abundance (P) by cohort (note that only P at the first age 
tagged is estimated directly in the model; subsequent age estimates are derived from the estimates of F and M).. 
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(b) Fishing mortality 
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(c) Population size 
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Figure 6. Parameter estimates from the model omitting catch data along with ± 1 standard error bars.  (a) Natural mortality rate (M) estimates by 
age; and (b) fishing mortality rate (F) estimates by cohort and age. (Note that abundance estimates are not obtained without catch data.) 
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(b) Fishing mortality 
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Figure 7. Parameter estimates from the model using a mixing period of 12 months along with ± 1 standard error bars.  (a) Natural mortality rate 
(M) estimates by age; (b) fishing mortality rate (F) estimates by cohort and age; and (c) abundance (P) by cohort (note that only P at the first age 
tagged is estimated directly in the model; subsequent age estimates are derived from the estimates of F and M).. 
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(b) Fishing mortality 
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(c) Population size 
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Discussion 

The results presented here provide a useful first step in estimating mortality rates and 
abundance from the Indian Ocean YFT tag-recapture and catch data. The estimates of 
natural mortality may prove particularly useful given the lack of alternative methods 
for estimating this parameter. Nevertheless, a large number of uncertainties exist in 
the data inputs and assumptions of the model, and the results must be considered 
carefully. For example, the most plausible growth curve for YFT has yet to be agreed 
upon, and as we demonstrated, the results of the BP analysis can be highly sensitive to 
the growth curve used. Also, the choice of a half-yearly time-step seemed most 
reasonable based on the data and some results obtained using annual and quarterly 
time-steps; however, the fact that the results could be quite different using these 
alternative time-steps needs to be given greater consideration (which lack of time 
prevented for this report).   
 
One of the key assumptions in the non-spatial BP analysis is that full mixing occurs 
across the population of interest. Thus, in the results presented here, we were 
assuming YFT from the Western and Eastern Indian Ocean mix completely. Without 
more tagging in the east, and especially without reporting rates from fisheries other 
than the purse seine fishery, it is very difficult to know to what extent this assumption 
is being met. In future, it may be possible to apply a spatial version of the BP model, 
say using the same 5 areas as defined for the MULTIFAN-CL stock assessment. In 
this case, mixing only needs to occur within each area for the model assumptions to 
be met. However, movement rates between areas then need to be estimated, either 
within the model or externally and input to the model. Unfortunately, with the lack of 
releases in all areas and the lack of reporting rates for all fisheries, it would be very 
difficult to estimate reliable movement rates.     
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