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Abstract

The natural mortality-at-age of three populations of Indian Ocean tunas (yellowfin,
bigeye and skipjack) can be assessed through the use of a Brownie-Petersen model esti-
mated from tagging and recapture experiments, commercial catch data and tag recovery
estimates. The present paper focuses on eliciting a Bayesian version of this model from the
RTTP-IO database, accounting for the differences of fishing pressure exerted by the main
fleets. The rationale for choosing a Bayesian framework is that it offers a major treatment
of uncertainties. The main sources of error in the data are highlighted and included in the
model. , while the are updated using new growth curves for each species. These prelimi-
nary assessments provide new natural mortality curves that seem to be mostly decreasing
over time, although they remain embued with non-negligible uncertainty.

Résumé

La mortalité naturelle de trois populations de thonidés de l’Océan Indien (albacore,
patudo, listao) peut être estimée par l’entremise d’un modèle de Brownie-Petersen (BP),
tirant parti de données de marquage-recapture, de données de prises commerciales et
d’estimés des taux de retour des marques. Cet article se focalise sur l’information ap-
portée par les données sélectionnées dans la base RTTP-IO sur les paramètres de mortalité
naturelle d’un modèle BP bayésien. Le choix du cadre statistique bayésien répond ici à
une volonté de mettre en lumière et traiter la majeure partie des incertitudes affectant les
mécanismes de production des données. Les principales sources d’erreur sont donc prises
en compte dans la modélisation, et notamment celles qui affectent les courbes de crois-
sance. Les résultats préliminaires indiquent que les courbes de mortalité semblent suivre
une forme décroissante, bien qu’elles restent affectées d’une incertitude dont une partie est
due aux approximations numériques nécessaires à l’estimation.
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1 Introduction

Assessing natural sources of mortality of tropical tunas is a major concern and an un-
easy task since all the estimates of mortality can only be obtained from data depending on
commercial fisheries (tag returns and catches), usually affected by many uncertainties. Un-
derstanding the mortality of juvenile, especially, is of particular interest since it underlies
different exploitation strategies by various types of fisheries. In this regard, an additional
difficulty is the mixing at young ages, in similar schools and habitats, of the Indian Ocean
three species considered in the present paper: yellowfin (YFT; Thunnus albacares), bigeye
(BET; Thunnus obesus) and skipjack (SKJ; Katsuwonus pelamis). Especially, Fonteneau
& Pallares (2004) stressed the importance of testing the hypothesis that natural mortality
of small tunas should be at similar levels as long as the three species are living in the same
schools and in the same habitat.

The ability of mutiyear tagging models to allow the estimation of age- and year-
specific survival of animal populations is now well documented and recognized (Seber,
1970; Brownie et al., 1985; Latour et al., 2001). Especially, they have been successfully
used to analyse fisheries tagging data: as shown by Pollock et al. (1991) then Hoenig et al.
(1998a), tag recovery rates can be converted to fishing exploitation rates provided informa-
tion on tag retention, induced mortality and reporting rate is available. The formulation
proposed by Brownie (Brownie et al., 1985) has known several generalizations. Studied for
multiple component fisheries by Brooks et al. (1998), it has been profitably strenghtened by
incorporating statistically the observations of commercial catches by Pollock et al. (2002)
in this same context. The comprehensive Brownie-Petersen (BP) framework of multiyear
tagging experiment proposed by Polacheck et al. (2006) achieved to formalize the interplay
between tagging and catch-at-age data. Furthermore it offers a precise view of the struc-
tural and numerical assumptions needed to get precise estimates of fishing and natural
mortality parameters. Recently, this modelling was used by the IOTC, in parallel to stan-
dard population models (e.g., MULTIFAN-CL), to conduct preliminary survival studies on
tuna populations (Eveson, 2011). Unknown parameters including natural mortality rates
were estimated using a maximum likelihood (ML) approach.

The present article aims at providing an alternative preliminary assessment of these
mortality rates using a Bayesian version of the BP model. Usually this framework allows
for a better analysis of uncertainties affecting the model parameters (Low Choy et al., 2009;
Pasanisi et al., 2012). In the context of tagging models, the estimation of uncertainty in-
dicators as covariance matrix of estimators using standard ML theory often appears not
relevant (Pollock et al., 2002) and bootstrap techniques are usually prefered (Polacheck
et al., 1997). However, their validity remains based on asymptotic theory, the relevance
of which being debatable when dealing with small time series. The Bayesian alternative
offers a simulation-based method where all sources of variation and uncertainty are incor-
porated into the simulation procedure, as recommended by Pollock et al. (2002). Among
others, Conn et al. (2008) have shown the relevance of this framework and the feasibility
of estimation when dealing with models comparable to BP, involving similar urn mech-
anisms. Furthermore, providing posterior distributions for mortality rates rather than
best-estimates can yield a first answer to the recommendations made by Fonteneau & Pal-
lares (2004) in terms of sensitivity analysis, who suggested that stock assessments should
be based on a wide range of biologically plausible levels of mortality-at-age rather than
pointwise estimates only.

Nevertheless, strong assumptions (e.g., fixing some parameters) remain needed to en-
sure identifiability in BP models. Therefore the present article only aims at providing a first
methodology of Bayesian estimation and establishing preliminary results. More precisely,
the article is structured as follows. Section 2 described the modeling and its structuring
hypotheses, including the nature of available data arising from the Regional Tuna Tagging
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Project of the Indian Ocean (RTTP-IO), and the elicitation of prior distributions for the
free parameters. Then Section 3 is devoted to conduct preliminary assessments of mortality
rates through MCMC algorithms for the three species.

2 Material and methods

The fish population is assumed to be exploited by N fishing fleets. In the context of
the three species described above, Indian Ocean fisheries are pooled in N = 5 separated
fleets following consistent patterns of exploitation: Asian longliners (ALL), pooling Japan,
Taiwan and Korean gears, French longliners (FLL) landing at La Réunion, South Asia
Maldives (MDV) pole-and-liners and European purse seiners (EPS) landing mainly at
Seychelles islands, Madagascar, Mauritius and in Spain. A separation is made between the
purse seine fishery based on floating objects and fishing aggregating devices (EPS-FO-FAD)
and the fishery on free schools (EPS-FS).

Quantities involved in BP models are tagging data and catches at age for each fleet.
Tagging data used for the study were released during RTTP-IO between 2002 and 2010,
and the same period is chosen to select commercial catch data. Each fleet (except FLL for
which the catches are not known) is characterized by a good collection of catch data, with
low discards (cf. Table 2 in IOTC (2010)).

A major prerequisite for handling BP models is the availability of age-length keys for
each species. Growth curves providing such keys are estimated in the Appendix Appendix
A. In the remainder of the paper, we denote ω

(k)
a,` the frequency of age a in an infinite

population of fork length ` for the species k, for a = a0, . . . , A. In the present document
a0 = 0.25 and A = 7 years. Ages and time steps are considered in quarters of year, so that
28 age classes are considered.

2.1 Population dynamics

For any species, the population dynamics are described by the classical following equations.
Denote Pa,t the number of individuals of age a ∈ {a0, . . . , A} at time t. It is assumed that

Pa+1,t+1 = Sa,tPa,t

with Sa,t the survival rate defined by

Sa,t = exp

(
−

N∑
s=1

F sa,t −Ma,t

)
, (1)

where F sa,t characterizes the instantaneous fishing mortality rate of the fishery s ∈ 1, . . . , N
and Ma,t denotes the instantaneous natural mortality rate. Consequently, the catch of
individuals of age a at time t is defined by Ca,t =

∑N
s=1 C

s
a,t where the catch attributable

to fishery s is given by

Csa,t = µsa,tPa,t

with µsa,t the exploitation rate defined by (Ricker, 1975)

µsa,t =
F sa,t

Ma,t +
N∑
s=1

F sa,t

(1− Sa,t) (2)

under the assumption that fishing effort is constant over the course of time step. It can be
interpreted as the probability for an animal of age a present at time t− 1 to be harvested
by the fishery s until time t. The total probability for a fish of age a not to survive between
times t− 1 and t is

N∑
s=1

µsa,t +
Ma,t

Ma,t +
N∑
s=1

F sa,t

(1− Sa,t) = 1− Sa,t.
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Since the species are jointly concerned with tagging and recapture, both processes induce
correlations between the observations. To differentiate the quantities characterizing each
species, an index k ∈ {1, 2, 3} will be used along the paper when needed.

2.2 Tagging process

Denote N`,t the known number of fish of size ` tagged then released at time t. Define N̂
(k)
`,t

as the observed number of fish of length ` of the species k tagged then released at time t.
Then denote the observed frequency of species k released at time t

κ̂
(k)
`,t =

N̂
(k)
`,t

N`,t

This observed frequency never exactly fits with the true frequency κ
(k)
`,t , so that N̂

(k)
`,t 6= N

(k)
`,t

the true value of fish from species k. Indeed, species can be erroneously attributed to
tagged fish before release because of difficulties inherent in tagging processes and similari-
ties between juveniles from different species. This specific error is likely to bias the relative
comparison between the estimates of natural mortality of the three species if those tagged
fish are not recaptured and their reported features never corrected. One has{

κ̂
(k)
`,t

}T
k∈{1,2,3}

= Ψ ·
{

κ
(k)
`,t

}T
k∈{1,2,3}

(3)

with Ψ the transition matrix from the unbiased to the biased attribution frequencies. A
good estimation of Ψ is given in Table 1. Consequently each κ

(k)
`,t can be debiased by linear

inversion. Denoting now N
(k)
a,t the number of fish of age a of the species k tagged then

released at time t, one has

N
(k)
a,t =

∑
`

ω
(k)
a,`κ

(k)
`,tN`,t.

2.3 Tag-recapture data

For a given species, multiple cohorts of fish are simultaneously tagged. If all cohorts are
modeled simultaneously, the mechanism of tagging recapture is described for one cohort
only to alleviate the notations. Similarly, the notation k indicating the species is let only
when needed Given Na,t, the observed number of returns (of the species k) after j time
steps by the fishery s is denoted Rsa+j,t+j . Marginally, assuming that the fate of each
tagged fish is independent,

Rsa+j,t+j ∼ Binom
(
Na,t, π

s
a+j,t+j

)
where πsa+j,t+j is the conditional probability for a tag released at age a and year t to be
returned by the fishery s after j time steps. A detailed description of the components
of this probability follows. Consecutively, given a time period T after the release, and
denoting

Ra+T,t+T =
(
R1
a+1,t+1, . . . , R

N
a+1,t+1, . . . , R

1
a+T,t+T , . . . , R

N
a+T,t+T

)
,

πa+T,t+T =
(
π1
a+1,t+1, . . . , π

N
a+1,t+1, . . . , π

1
a+T,t+T , . . . , π

N
a+T,t+T

)
,

R
∑
a+T,t+T =

T∑
t=1

N∑
s=1

Rsa+t,j+t,

π
∑
a+T,t+T =

T∑
t=1

N∑
s=1

πsa+t,j+t,

then the joint distribution of all returns is{
Ra+T,t+T, Na,t −R

∑
a+T,t+T

}
∼ Mult

(
Na,t ;

{
πa+T,t+T , 1− π

∑
a+T,t+T

})
.
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A tagging recapture experiment can thus be described by a multinomial likelihood over the
tagged catches of a given cohort. Since all cohorts are submitted to similar mechanisms
of death in common time windows, they are clearly not independent. However, given the
parameter vector θ of all unknowns, which incorporates natural and fishing mortality pa-
rameters, the loglikelihood of tagging data for all cohorts is the sum of all multinomial
loglikelihoods.

Expanding the description made by Pollock et al. (2002), the tag recovery probability
πsa+j,t+j can be precised as follows:

πsa+j,t+j = α · δsa+j,t+j · λsa+j,t+j .
(a) α is the probability that an animal survives any initial tag shedding and initial tag-

induced mortality (so-called instantaneous retention-survival rate). Denoting Qa,j
the probability of a tag being retained after j time steps for a fish released at age a,
then α = Qa,0. The calibration of the tag shedding probability 1 −Qa,j , expressing
continuous tagging mortality or loss, is detailed in Appendix Appendix B.

(b) δsa+j,t+j is the probability that a tagged fish released at age a and time t be captured
after j time steps by the fishery s:

δ
s,(k)
a+j,t+j = ζ

s,(k)
a+j,t+j · ν

s,(k)
a+j,t+j ,

where:

• ζsa+j,t+j is the conditional probability that the tagged fish is mixed with the non-
tagged population targeted by the fishery s after j time step. In the application
considered here, following recent IOTC recommendations (IOTC, 2009; Langley
et al., 2010), the mixing of tagged and non-tagged fish is assumed to be certain
after 3 months (j ≥ 1 and ζsa+j,t+j = 1), therefore the animals tagged at time
t are expected to experience the same fishing mortality than previously tagged
or non-tagged animals. In § 3.1, supplementary details are given about the
careful data selection needed to validate this mixing hypothesis, which is a major
assumption of tag-recovery models, outlined by Brownie et al. (1985) and Pollock
et al. (1991). Hoenig et al. (1998b) have indeed highlighted that the violation of
this assumption can lead to seriously biased mortality estimates.

• νsa+j,t+j is the conditional probability that a fish of age a at time t be catched
after j ≥ 1 time steps by the fishery s:

νsa+j,t+j = µsa+j,t+j

[
j−1∏
k=0

Sa+k,t+k

]
.

To account for continuous tagging mortality or loss, equations (1) and (2) must
be modified in

Sa+k,t+k = exp(−β) exp

(
−

N∑
s=1

F sa+k,t+k −Ma+k,t+k

)
,

µsa,t =
F sa,t

Ma,t +
N∑
s=1

F sa,t + β

(1− Sa,t)

with β the continuous shedding rate (cf. Appendix B).

(c) λsa+j,t+j is the conditional probability of a recovered tagged fish being reported if it is
captured by fishery s after j time steps. This probability depends on three processes:
(a) the tag detection on a harvested fish ; (b) the probability that a detected tag be
reported ; (c) the reporting error due to the possible misidentification of the harvested
species. Available information on the λsa+j,t+j is described beneath.

5



2.4 Reporting rate data

For each species, tag reporting rates were recently estimated by Hillary et al. (2008) for
the purse-seine fleet based in Seychelles and Carruthers et al. (2012) for European purse-
seiners, Maldivian pole-and-liners and French longliners. Using a generalized linear-logistic
regression based on discrete tagging of harvested fish by scientific observers and volun-
tary skippers between 2004 and 2007, Hillary et al. (2008) produced couples of estimates
(λ̂st , σ̂

s
λt

) which were mostly explained by a year effect. Updated after 2007, the stability of
results (Figure 1) allows to predict an average reporting rate of 95% for the three species
confounded in the most recent years. Since no detail is available about the reporting rates
by stevedores at other locations in the Indian Ocean, these results are assumed to be
relevant for European purse-seiners in general.

In Carruthers et al. (2012), similar estimates were computed for the full period 2002-
2010 (Table 4). Similarly, species and age are second-order explicative variables, and are
therefore not accounted for in the present modelling. The reporting rate of Asian longliners
considered here is a mixture of Japan (J), Korean (K) and Taiwanan (Tw) LL reporting
rates given in Carruthers et al. (2012), weighted by the relative capturability of each fishery.
This capturability is estimated by

γ(s) =
1

t1 − t0

t1∑
t=t0

T
(s)
mt∑

i∈{J,K,Tw}
T

(i)
mt

where T
(s)
mt is the total weight of catches at time step t annually observed between 2002 and

2010, given in the RTTP-IO database. One has γ(T ) = 61%, γ(J) = 35% and γ(K) = 4%.
These proportions are detailed by species in Table 3.

The estimates of tag reporting rates are furthermore submitted to identification errors.
Despite the correction of the tagging error described at § 2.2, two species can still be
confounded during the collect of tags after recapture with a small probability (estimated
to 2.7%) and in case of confusion, this error was found to be rather symmetrical (∼ 50%

of choosing among the two other species), unlike the tagging error. Renaming λ̂st in λ̂
s(k)
t

with the species index k ∈ {1, 2, 3}, one replace λ̂
s(k)
t by the unbiased estimation λ̃

s(k)
t

defined by the linear problem{
λ̂
s(k)
t

}T
k∈{1,2,3}

= Ψ−1 · Λ ·
{
λ̃
s(k)
t

}T
k∈{1,2,3}

where the transition matrix Λ is estimated in Table 1. Consequently, each λ̃
s(k)
t can be

computed by linear inversion.

Finally, the incorporation of reporting rates estimates with their estimated standard
deviation into the Bayesian model is made as follows. It is assumed that a good approxi-
mation of the distribution of λ̂t, defining a likelihood of tag reporting rates, is

λ̂st |λst ∼ N (λst , σ̂
s
t )

where λst is the true reporting rate. If a more accurate distribution of λ̂st should lay on a
urn mechanism involving a binomial distribution, as explained in Polacheck et al. (2006),
this practical Gaussian choice appears relevant with respect to the shape of posterior
distributions of λ̂st obtained by Carruthers et al. (2012) and appears furthermore justified
by the Bayesian central limit (Bernstein-von Mises) theorem. It is truncated over [0, 1] in
practice since λ̂st is a fraction. A non-informative uniform prior is also implemented for λst .

2.5 Commercial catch data

Urn mechanisms similar to those monitoring the returns of tags applies to catch-at-age
production. The catch Csa+j,t+j taken by the fishery s is such that, marginally,

Csa+j,t+j ∼ B
(
Pa,t, ν

s
a+j,t+j

)
.
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And similarly, using the same kind of notations, one has{
Ca+T,t+T, Pa,t −C

∑
a+T,t+T

}
∼ M

(
Pa,t ;

{
νa+T,t+T , 1− ν

∑
a+T,t+T

})
.

However, this multinomial likelihood characterizes the true catches-at-age. In reality, var-
ious uncertainties occur in the observational process and, additioned to those that may
emanate from model assumptions, usually dominate this uncertainty (Polacheck et al.,
2006). For this reason, most BP studies lays on the catch likelihood emanating from this
process (Eveson et al., 2009; Eveson, 2011). Following a common practice in tag-recapture

models, a Gaussian distribution is assumed over the catch estimates
{

Ĉa+T,t+T

}
:

Ĉsa+j,t+j ∼ N
(
νsa+j,t+jPa,t, (σ

s
a+j,t+j)

2) .
Polacheck et al. (2006) have detailed why catch CVs cannot be estimated in a reliable way
for usual BP models from tagging and catch data. Thus it has become common to set a
large value for σsa+j,t+j (typically such that CV[Ĉsa+j,t+j ] ∈ [30%, 40%]). Indeed, Polacheck
et al. (2006) showed the BP model results remain rather insensitive to this value. For the
present preliminary assessments, a 30% CV was chosen.

2.6 Assumption on mortality rates

Natural mortality rates. Following the practice of most tuna stock assessments
worldwide, it is assumed that the natural mortality rate can differ between ages, but
not between cohorts (Ma,t = Ma). Most of previous works involving a BP model have
usually placed no hypothesis on the form of Ma to account for all uncertainties (Polacheck
et al., 2006; Eveson et al., 2007; Eveson, 2011). However, some analytical simplifications
are often assumed to avoid too much model complexity, identifiability issues or irrealistic
estimations, as constant rates for young and old ages, respectively (Fonteneau & Pallares,
2004; IOTC, 2010), or linear interpolation (Polacheck et al., 2006).

Nonetheless, we deliberately choose not to follow an analytical approach fitting with
the common idea that M is strongly correlated with various life history parameters, such as
growth rate, age at sexual maturity, etc. (Vetter, 1988; Hampton, 1992; Chen & Watanabe,
1989). Rather, we adopt a more flexible, versatile modelling of M(a), independent of the
growth curve, that may fit with the variety of shape constraints noticed in previous works
for the mapping a 7→ M(a). Especially, Fonteneau & Pallares (2004) highlighted that
bigeye tuna mortality seems not to always obey the traditional U-shaped curve (Siegfried
& Sansó, 2009; Brodziak et al., 2011), according to which, after a fast decrease of M(a) at
the first ages, a senescence phenomenon starts after the age a1 sexual maturity (Fig. 3 in
Fonteneau & Pallares (2004)). An alternative is the W-shaped curve (Fig. 4 in Fonteneau
& Pallares (2004)), involving a second peak of mortality in a2 usually attributed to the
occurence of first spawning.

Two possible approaches have been preliminary explored to model M(a). The first
one was analytical, based on cubic splines (Bartels et al., 1998), the parameters of which
being submitted to prior constraints. It was found to give some unrealistic estimations.
The second approach is non-analytical but based on placing conditional prior constraints
directly on the components of M(a) in the following way:

M(a0) ∼ U[M0 min,M0 max],

M(a0 + 1)|M(a0) ∼ U[M1 min,M(a0)],

M(a0 + 2)|M(a0 + 1) ∼ U[M2 min,M(a0+1)],

. . .

such that the common convex form of the mortality be assumed for youngest ages. A con-
stant prior is assumed from the postulated age when senescence begins such that both U−
and W−shaped curves be possible. Moreover, to diminish the dimension of the estimation
problem in these preliminary assessments, the natural mortality is assumed to be constant
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per year, except for year 0 (between 0.25 and 1 year). For all species relevant magnitudes
for the bounds (Mimin,Mimax) can be found in Fonteneau (2003); Fonteneau & Pallares
(2004); Fonteneau (2011).

Fishing rates. Different fishing rates characterize the fleets for reasons mixing technical
and behavioral particularities. To avoid overparameterization a separability assumption
(Doubleday, 1976; Fournier & Archibald, 1982) is needed. Following classical assumptions
made in MULTIFAN-CL models and the formulation proposed by Hoenig et al. (1998a)
for multiyear tagging models, it is assumed that

logF sa,t = logF st + log ςsa

where ςsa is the selectivity-at-age characterizing the fishery s. In the model, fishing rates
F st are free parameters while ςsa are fixed. Considering that exp(−F st ) can be interpreted
as a survival probability, a non-informative uniform prior on this probability implies that
a reference prior is F st ∼ E(1).

The ςsa for each species have been estimated using the approach proposed by Restrepo
et al. (2007). Selectivities were originally estimated for YFT using MULTIFAN-CL (Lang-
ley et al., 2011), for BET using ASPM (Nishida & Rademeyer, 2011) or Virtual Population
Analysis (VPA ; Zhu et al. (2011)), and for SKJ using SS3 (Kolody et al., 2011). In the
present paper they have been recalculated as follows. First they have been translated in
smooth selectivities-at-length with the help of the growth curves used by these authors and
cubic spline interpolation (Bartels et al., 1998), then retranslated to selectivities-at-age us-
ing the growth curves given in Appendix A. The selectivity estimated for the baitboats
of the MFCL region 2 was used for the Maldivian pole and liners. The selectivity for all
longliners for the period 1972-2010 was constant across regions and used for the Japanese
longliners. Finally, the selectivity estimated for the purse seiners on free-swimming and
log-associated sets in the MFCL region 2 were used since most of the purse seine catch
comes from this area. Final selectivity curves are plotted on Figures 3 to 5.

3 Preliminary assessments of natural mortality rates

3.1 Treatment of RTTP-IO data

Two populations of tags were removed from the number of releases N considered at any
release event: (a) the tags that are immediatly recaptured within the considered period
of non-mixing (assumed to be 3 months for each species) ; and (b) the tags that were
recaptured by other fishing fleets than those considered in the present paper. The correction
of the tagging error described in § 2.2 is only applied to released tags that were not recovered
and for which the placement were not fully reliable.

3.2 Statistical estimation

The statistical estimation of the parameters is based on the product of three likehoods em-
anating from all observational processes carrying main uncertainties: the sampling arising
from the tag recovery process (§ 2.3), the reporting process itself (§ 2.4) and the obser-
vation of catches (§ 2.5). The free parameters of the model are the fishing rates F st , the
natural mortality components, the true tag reporting rates and the population of tagged
cohorts at first age of tagging. Informative priors were elicited for (F s,M, λ) (especially
λ) and weakly informative uniform priors were chosen for the cohort population on the
log scale. The Bayesian BP model was implemented and tested in OpenBUGS (Lunn
et al., 2009) and JAGS (Plummer, 2003) languages. The second software was found to be
more suitable to run Gibbs posterior sampling in acceptable time (3 4 days per experi-
ment). MCMC experiments were conducted using a minimum number of 40,000 iterations

8



and the convergence of chains to the stationary posterior distribution was managed and
checked using the Brooks-Gelman diagnostic (Brooks & Gelman, 1998) implemented in the
CODA software (Plummer et al., 2006). Approximate posterior areas of highest density for
M(a) are plotted on Figures 6 to 8. If these preliminary curves remain imbued with much
sampling uncertainty which could encompass a variety of forms, they seem to be mostly
decreasing over time.

4 Discussion

These preliminary assessments must be first confirmed by several simulation studies, then
strengthened with sensitivity analyses. The present results remain too crude to test statis-
tically the hypothesis that at youngest ages the species share natural mortality features, as
it is expected to be since they live in same schools. Refining the model and improving the
computational aspects of the estimation will help to do so. The sensitivity analyses must
be conducted by varying the most critical aspects of the model: reporting rates for Asian
fishing fleets, priors over natural mortality components. The huge computational work
needed to carry out both kind of analyses appears clearly as a limiting factor of the study.
Nonetheless, it is important to test the identifiability and the posterior robustness with
respect to several combinations of (somewhat arbitrary) prior constraints, as assuming a
constant natural mortality rate per year to diminish the dimension of the problem, even if
it is likely that this hypothesis should help to improve the assessment of natural mortality
rates at first ages. These studies should besides focus on how the mortality at-age evolves
with the growth, and if a clear correspondence can be established with each growth curve,
as in ?.

Several technical points could be improved in future studies. The mixing of tagged and
untagged fish could be better accounted for. In this paper, it was considered that only
a quarter of year (trimester) is enough to ensure that catch of tagged fish are not unbi-
ased by a slow mixing of the two populations. Nonetheless, Langley et al. (2011) recently
recommended to use yearly time steps rather than one quarter to increase the quality of
mixing. The robustness of results could be tested by selecting the tagging data followig
this more cautious hypothesis.

In a more long-term perspective, another research avenue is accounting for sexual di-
morphism in growth, as summarized in IOTC (2010) (§ 3.4.3). Testing if the natural
mortality curves between males and females statistically differ could be helpful to improve
the population assessment models and to adjust the exploitation policies. Finally, the
spatialization of the BP model including multiple component fisheries, initiated by Eveson
et al. (2009), would be a major theme of research.
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Appendix A Age-length keys

Recent IOTC works (Eveson & Million, 2008a; Fonteneau & Gascuel, 2008) have demon-
strated that the growths of YFT and BET follow multi-stanza patterns instead of classical
von Bertalanffy curves. On the contrary, this classical approach was found relevant for
SKJ by various studies (IOTC, 2010). The estimated growth curves used in this paper,
affected with uncertainty, are plotted on Figure 2.

YFT: Eveson & Million (2008a) showed the relevance of a von Bertalanffy-log K (VB-log
K) model (Laslett et al., 2002). Massiot-Granier et al. (2010) proposed a VB-log K model
which was found coherent with the two-stanza growth model (Fonteneau, 2008) used in
the current YFT stock assessment produced by MULTIFAN-CL (IOTC (2010), § 4.4.1)
but somewhat differing from the results previously obtained by Eveson & Million (2008b):

`(a|θY ) = L∞

{
1− exp (−k2[a− a0])

[
1 + exp(−β′Y (a− a0 − α′Y ))

1 + exp(βY α′Y )

]−(k2−k1)/β′
Y

}
(4)

where the parameter vector θY = (L∞, a0, k1, k2, α′Y , β
′
Y ) is considered random and ` is

given in centimeters while a is given in years. A Bayesian study conducted in Dortel
et al. (2012) allows to estimate the posterior distribution of θY given otolith and modal
progress data (capture frequencies) collected through the RTTP-IO before September 2010,
independently of the tagging data used in the present paper for estimating the BP model.

BET: Similarly to YFT, strong evidences support the use of a VB-log K model (Eveson
& Million, 2008a). Following the same kind methodology and similar data than for the
YFT case, the posterior distribution of θY was estimated in (Dortel et al., 2012). However,
the lack of data in the upper tail of the curve leads to higher uncertainty levels from age
3.75 years.

SKJ: A von Bertalanffy-Fabens model (favored by Eveson & Million (2008a)) was re-
cently fitted by Gaertner et al. (2011) from tagging-recapture RTTP-IO data released
between 2005 and 2007. Their estimates were found consistent with the range of growth
estimates obtained in various studies of the world’s oceans.

When applied to the conversion of fish fork length to fish age, it is needed to define ω
(k)
a,`

the frequency of age a in an infinite population of fork length ` for the species k. Given a
length `, the most probable age is estimated by

a∗(`) = arg max
x∈{a0,...,A}

ω
(k)
x,` .

Consider a fish of any length ` of the species k with unknown age. Then ω
(k)
i,` can be

interpreted as the limit probability that the age a of the fish is i given that ` is a given
class C`,ε of measure ε→ 0. Bayes’ rule implies that

ω
(k)
i,` = K` · P (`(a) ∈ C`,ε|a = i)

with K` a normalization factor due to the constraint
∑A
i=a0

ω
(k)
i,` = 1 ∀(k, `). Practically,

an estimation of ω
(k)
i,` can be provided by f

(k)
i (`)/

∑A
a=a0

f
(k)
a (`) where f

(k)
i is the density
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function of all lengths that can be sampled given age i from (4) and the distribution of θY .

In the present paper, Gaussian kernel estimation was used to assess the frequencies ω
(k)
i,`

using 50,000 sampled lengths for each age, from 10cm to 250cm at the minimal precision
level of 0.1cm (corresponding to the precision level of tagging data). Two final remarks
can be made:

1. The implemented age-length relationships are used to estimate the most probable age
given an observed length. This can be done by adding the effect of the observational
noise (reading error) when sampling the length-at-age to estimate the ω:

`∗(a|θY ) = `(a|θY ) + εa

with εa ∼ N (0, φ2). A unique standard deviation of φ = 3 cm was used in the
present paper, which was estimated from repeated tagging experiments (cf. Dortel
et al. (2012)).

2. It is more convenient to establish the age of a tagged fish by estimating the age at
release using a growth curve then adding the time at liberty, rather than using directly
the growth curve at the time of recapture. Although the measurement noise is larger
before release than at recapture, the uncertainty affecting the growth curves and their
flatteting at oldest ages makes the age conversion more hazardous in practice.

Appendix B Tag shedding

Shedding rates can be divided in two types (Wetherall, 1982) and are usually estimated
from double tagging experiments. Type-1 refers to immediate tag shedding/mortality and
failure to report recovered tags, while Type-2 pertains to continuous tag shedding/mortality
(for instance attributable to the tag itself, emigration processes away fishing grounds, etc.).
We do not use here the method proposed by Hillary et al. (2008) who considered a parti-
tion of the time-at-liberty and estimated the tag retention probability for each element of
this partition, but the simpler approach favored by (among others) Gaertner and Hallier
(2008, 2009). They analysed 27,850 double tags with 4,650 recoveries collected between
2006 and 2009, during the RTTP-IO. The results revealed that a simple constant tagging
rate is enough to explain each kind of shedding, independently of time and locations of
tagging cruises. Consistently with other results obtained from large-scale tropical tuna
tagging projects and after testing several models, the authors estimated the probability of
a tag being retained at time j after release by

Qa,j = Qj = α exp(−βj) (5)

with parameters (α, β) ∈ [0, 1] × IR+ updated in 2012 and given in Table 2 for the three
species. Considering a time step in quarters, the value β is divided by 4 in the computa-
tions.
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Figure 3: Selectivity-at-age for the yellowfin.

● ●
●

●

●

●

●

●

Asian LL

ages

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

●

●

●
●

●

●

●

European PS on Free Schools

ages

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

●

●
●●●●●

European PS on FAD / LOG

ages

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4: Selectivity-at-age for the bigeye.
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Figure 8: Preliminary assessment of SKJ natural mortality-at-age.

Ψ Λ
B Y S B Y S

B 97.92 1.85 0.23 B 97.33 1.93 0.73
Y 1.68 97.92 0.40 Y 1.84 97.33 0.83
S 0.39 1.69 97.92 S 1.25 1.42 97.33

Table 1: Inter-species transition matrices (Ψ,Λ) for the species attribution frequency at tagging
(left) and at recapture.
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α β (year−1)
SKJ 0.993 (0.0040) 0.029 (0.007)

YFT 0.977 (0.0056) 0.039 (0.010)

BET 0.993 (0.0036) 0.017 (0.005)

Table 2: Parameters of the tag retention equation (5) estimated by Gaertner & Hallier (2009)
for skipjack (SKJ), yellowfin (YFT) and bigeye (BET) tunas, updated in 2012. Conservative
standard deviations (between parenthesis) are computed from bootstrapped confidence intervals
given by the authors. Results are consistent with those obtained in Hillary et al. (2008) using
a different method.

SKJ YLF BET
JPN 44% 37% 25%
KOR 53% 57% 72%
TWN 3% 6% 3%

100% 100% 100%

Table 3: Observed relative capturability for Asian longliners, per species.

s λ̂
(s)
T σ̂

(s)
T

EPS-FS / EPS-LS 93.99% 0.55%
ALL 3.77% 0.51%
FLL 5.50% 2.06%
MDV 23.84% 0.46%

Table 4: Reporting rate estimates per fishing fleet in most recent years, from Carruthers et al.
(2012), for all tuna species.
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