Jump to navigation
Food and Agriculture Organization

User menu

  • Contactez-nous
  • Login

Search form

  • English
  • Français
Indian Ocean Tuna Commission
Indian Ocean Tuna Commission
  • Accueil
  • La Commission
    • Presentation Generale
    • Structure de la Commission
    • Comité scientifique
    • Comité d'application
    • Comité permanent d'administration et des finances
    • Compétence: zone & espèces
    • Historique & Textes de base
    • Mesures de conservation et de gestion
    • Observateurs aux réunions CTOI
    • Coopération avec d'autres organisations
    • Renforcement des capacités
    • Évaluation des performances
    • Le Secrétariat
    • Personnel du Secrétariat
    • Estimations pour l’allocation
  • Science
    • Presentation Generale
    • Comité scientifique
    • État des stocks
    • Groupes de travail scientifiques
    • Mécanisme régional d'observateurs scientifiques
    • Renforcement des capacités : science
    • Glossaire scientifique de la CTOI
    • Experts invités et consultants
    • Requête sur les données
  • Application
    • Presentation Generale
    • Comité d'application
    • Informations pour le SCS
    • Listes de navires/ Liste De Navires INN
    • Mesures du ressort de l'État du port
    • Modèles pour la déclaration
    • Programme de document statistique
    • Programme régional d'observateurs
    • Renforcement des capacités: Application
    • Suivi de l'application
    • Validation Statdoc
  • Données
    • Presentation Generale
    • Déclarer des données à la CTOI
    • État des déclarations de données à la CTOI
    • Jeux de données disponibles
    • Renforcement des capacités: données
    • Requête sur les données
  • Réunions
  • Documents
  • Nouvelles
  • Outils éducatifs

Quick links

  • Accueil
  • Estimations pour l'allocation
  • Renforcement des capacités
  • Mesures de conservation et de gestion
    • Recherche
  • Application e-PSM
    • Demande d'entrée au port
  • Circulaires CTOI
  • Glossaire scientifique
  • Liste des navires INN
  • Navigateur de données interactif
  • Évaluation des performances
  • Validation DocStat
  • État des stocks
  • Registres des navires
  • e-MARIS
  • e-RAV

On the dangers of including demographic analysis in Bayesian surplus production models: A case study for Indian Ocean blue shark

Reference: 
IOTC-2021-WPEB17(DP)-INF02
Fichier: 
PDF icon IOTC-2021-WPEB17DP-INF02.pdf
Type: 
Documents d'information
Année de réunion: 
2021
Réunion: 
Groupe de travail sur les écosystèmes et les prises accessoires (GTEPA)
Session: 
1 701
Disponibilité: 
31 mars 2021
Auteurs: 
Geng Z
Punt A
Wang Y
Zhu J
Dai X
Description: 

The Schaefer and Pella-Tomlinson production models (LPM and PTPM) can be used to provide management
advice in data poor situations, as they require only a time-series of catches and an index of abundance. These
models are commonly fit using Bayesian methods, with the prior for the intrinsic rate of growth (r) set based on
the results of a demographic analysis. We used simulations based on blue shark Prionace glauca in the Indian
Ocean to evaluate the performances of estimation methods that reflect different assumptions regarding the form
of the production function and the basis for the prior for r. Nine age-structured operating models reflected
different levels of productivity (determined by the steepness of stock-recruitment relationship [h=0.4; h=0.6;
h=0.79] and the pattern of historical catches (increasing, stable and declining). As expected, estimation performance
was poorer for greater extents of observation error, and better when there was more ‘contrast’ in
biomass. However, the PTPM usually performed worse than the LPM, particularly for high levels of observation
error. Surprisingly, the prior for r with mean set to of the estimate of the r inferred from the demographic
analysis combined with the LPM performed best for an increasing catch series (a one-way trip in biomass) and
high uncertainty in the abundance index. Additional analyses revealed that the poor performance of the PTPM
was due to the additional estimation variance associated with the estimation of the shape parameter, while the
better performance for the ‘wrong prior’ occurred because the Schaefer model assumes a linear relationship
between growth rate and population depletion whereas an age-structured model implies a non-linear relationship.
Given poor data, r is not updated much, leading the LPM to overestimate productivity. This paper highlights
the dangers of naively integrating demographic analysis into Bayesian surplus production models, and the
value of including simulation analysis as a part of the standard set of diagnostics used when selecting an estimation
method on which to base stock assessments. We also recommend use of JABBA-Select or a prior for r from
a demographic analysis that accounts for the status of the population when the data on which the demographic
parameters are based as well as the form of the production function.

Footer menu

  • Accueil
  • La Commission
  • Science
  • Application
  • Données
  • Réunions
  • Documents
  • Nouvelles
  • Outils éducatifs